文档
注册
评分
提单
论坛
小AI

支持TensorFlow算子清单

该算子规格仅适用于TensorFlow框架(TensorFlow版本为1.15与2.6.5)原生IR定义的网络模型,参数解释请参见TensorFlow官网。如果要查看基于Ascend IR定义的单算子信息,请参见CANN算子清单

支持的TF算子名称

算子分类

算子功能

Abs

math_ops

Computes the absolute value of a tensor.

AccumulateNV2

math_ops

Returns the element-wise sum of a list of tensors.

Acos

math_ops

Computes acos of x element-wise.

Acosh

math_ops

Computes inverse hyperbolic cosine of x element-wise.

Add

math_ops

Returns x + y element-wise.

AddN

math_ops

Add all input tensors element wise.

AddV2

math_ops

Returns x + y element-wise.

All

math_ops

Computes the "logical and" of elements across dimensions of a tensor.

Any

math_ops

Computes the "logical or" of elements across dimensions of a tensor.

ApproximateEqual

math_ops

Returns the truth value of abs(x-y) < tolerance element-wise.

ArgMax

math_ops

Returns the index with the largest value across dimensions of a tensor.

ArgMin

math_ops

Returns the index with the smallest value across dimensions of a tensor.

Asin

math_ops

Computes asin of x element-wise.

Asinh

math_ops

Computes inverse hyperbolic sine of x element-wise.

Atan

math_ops

Computes atan of x element-wise.

Atan2

math_ops

Computes arctangent of y/x element-wise, respecting signs of the arguments.

Atanh

math_ops

Computes inverse hyperbolic tangent of x element-wise.

AvgPool

nn_ops

Performs average pooling on the input.

Batch

batch_ops

-

BatchMatMul

math_ops

Multiplies slices of two tensors in batches.

BatchToSpace

array_ops

BatchToSpace for 4-D tensors of type T.

BatchToSpaceND

array_ops

BatchToSpace for N-D tensors of type T.

BesselI0e

math_ops

Computes the Bessel i0e function of x element-wise.

BesselI1e

math_ops

Computes the Bessel i1e function of x element-wise.

Betainc

math_ops

Compute the regularized incomplete beta integral \(I_x(a, b)\).

BiasAdd

nn_ops

Adds bias to value.

Bincount

math_ops

Counts the number of occurrences of each value in an integer array.

BitwiseAnd

bitwise_ops

-

BitwiseOr

bitwise_ops

-

BitwiseXor

bitwise_ops

-

BroadcastTo

array_ops

Broadcast an array for a compatible shape.

Bucketize

math_ops

Bucketizes 'input' based on 'boundaries'.

Cast

math_ops

Cast x of type SrcT to y of DstT.

Ceil

math_ops

Returns element-wise smallest integer not less than x.

CheckNumerics

array_ops

Checks a tensor for NaN and Inf values.

Cholesky

linalg_ops

-

CholeskyGrad

linalg_ops

-

ClipByValue

math_ops

Clips tensor values to a specified min and max.

CompareAndBitpack

math_ops

Compare values of input to threshold and pack resulting bits into a uint8.

Concat

array_ops

Concatenates tensors along one dimension.

ConcatV2

array_ops

-

Const

array_ops

-

ControlTrigger

control_flow_ops

Does nothing.

Conv2D

nn_ops

Computes a 2-D convolution given 4-D input and filter tensors.

Conv2DBackpropFilter

nn_ops

Computes the gradients of convolution with respect to the filter.

Conv2DBackpropInput

nn_ops

Computes the gradients of convolution with respect to the input.

Conv3D

nn_ops

Computes a 3D convolution given 5D "x" and "filter" tensor.

Cos

math_ops

Computes cos of x element-wise.

Cosh

math_ops

Computes hyperbolic cosine of x element-wise.

Cumprod

math_ops

Compute the cumulative product of the tensor x along axis.

Cumsum

math_ops

Compute the cumulative sum of the tensor x along axis.

DataFormatDimMap

nn_ops

Returns the dimension index in the destination data format given the one in.

DataFormatVecPermute

nn_ops

Returns the permuted vector/tensor in the destination data format given the.

DepthToSpace

array_ops

DepthToSpace for tensors of type T.

DepthwiseConv2dNative

nn_ops

Computes a 2-D depthwise convolution given 4-D input and filtertensors.

DepthwiseConv2dNativeBackpropFilter

nn_ops

Computes the gradients of depthwise convolution with respect to the filter.

DepthwiseConv2dNativeBackpropInput

nn_ops

Computes the gradients of depthwise convolution with respect to the input.

Dequantize

array_ops

Dequantize the 'input' tensor into a float Tensor.

Diag

array_ops

Returns a diagonal tensor with a given diagonal values.

DiagPart

array_ops

Returns the diagonal part of the tensor.

Div

math_ops

Returns x / y element-wise.

DivNoNan

math_ops

Returns 0 if the denominator is zero.

Elu

nn_ops

Computes exponential linear: exp(features) - 1 if < 0, features otherwise.

Empty

array_ops

Creates a tensor with the given shape.

Enter

control_flow_ops

-

Equal

math_ops

Returns the truth value of (x == y) element-wise.

Erf

math_ops

Computes the Gauss error function of x element-wise.

Erfc

math_ops

Computes the complementary error function of x element-wise.

Exit

control_flow_ops

-

Exp

math_ops

Computes exponential of x element-wise.

ExpandDims

array_ops

Inserts a dimension of 1 into a tensor's shape.

Expm1

math_ops

Computes exponential of x - 1 element-wise.

ExtractImagePatches

array_ops

Extract patches from images and put them in the "depth" output dimension.

FakeQuantWithMinMaxArgs

array_ops

Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same type.

FakeQuantWithMinMaxVars

array_ops

Fake-quantize the 'inputs' tensor of type float via global float scalars min.

FakeQuantWithMinMaxVarsPerChannel

array_ops

Fake-quantize the 'inputs' tensor of type float and one of the shapes: [d],.

Fill

array_ops

Creates a tensor filled with a scalar value.

Floor

math_ops

Returns element-wise largest integer not greater than x.

FloorDiv

math_ops

Returns x // y element-wise.

FloorMod

math_ops

Returns element-wise remainder of division.

FractionalAvgPool

nn_ops

Performs fractional average pooling on the input.

FractionalAvgPoolGrad

nn_ops

-

FractionalMaxPool

nn_ops

Performs fractional max pooling on the input.

FractionalMaxPoolGrad

nn_ops

-

FusedBatchNorm

nn_ops

Batch normalization.

FusedBatchNormV2

nn_ops

Batch normalization.

Gather

array_ops

Gather slices from params according to indices.

GatherNd

array_ops

Gather slices from params into a Tensor with shape specified by indices.

GatherV2

array_ops

Gather slices from params axis according to indices.

Greater

math_ops

Returns the truth value of (x > y) element-wise.

GreaterEqual

math_ops

Returns the truth value of (x >= y) element-wise.

GuaranteeConst

array_ops

Gives a guarantee to the TF runtime that the input tensor is a constant.

HistogramFixedWidth

math_ops

Return histogram of values.

Identity

array_ops

Return a tensor with the same shape and contents as the input tensor or value.

IdentityN

array_ops

Returns a list of tensors with the same shapes and contents as the input.

Igamma

math_ops

Compute the lower regularized incomplete Gamma function P(a, x).

Igammac

math_ops

Compute the upper regularized incomplete Gamma function Q(a, x).

IgammaGradA

math_ops

-

InplaceAdd

array_ops

Adds v into specified rows of x.

InplaceSub

array_ops

Subtracts v into specified rows of x.

InplaceUpdate

array_ops

Updates specified rows with values in v.

InTopK

nn_ops

Says whether the targets are in the top K predictions.

InTopKV2

nn_ops

Says whether the targets are in the top K predictions.

Inv

math_ops

Computes the reciprocal of x element-wise.

Invert

bitwise_ops

-

InvertPermutation

array_ops

Computes the inverse permutation of a tensor.

IsVariableInitialized

state_ops

Checks whether a tensor has been initialized.

L2Loss

nn_ops

L2 Loss.

Less

math_ops

Returns the truth value of (x < y) element-wise.

LessEqual

math_ops

Returns the truth value of (x <= y) element-wise.

LinSpace

math_ops

Generates values in an interval.

ListDiff

array_ops

-

Log

math_ops

Computes natural logarithm of x element-wise.

Log1p

math_ops

Computes natural logarithm of (1 + x) element-wise.

LogicalAnd

math_ops

Returns the truth value of x AND y element-wise.

LogicalNot

math_ops

Returns the truth value of NOT x element-wise.

LogicalOr

math_ops

Returns the truth value of x OR y element-wise.

LogMatrixDeterminant

linalg_ops

-

LogSoftmax

nn_ops

Computes log softmax activations.

LoopCond

control_flow_ops

Forwards the input to the output.

LowerBound

array_ops

-

LRN

nn_ops

Local Response Normalization.

MatMul

math_ops

Multiply the matrix "a" by the matrix "b".

MatrixBandPart

array_ops

Copy a tensor setting everything outside a central band in each innermost matrix.

MatrixDeterminant

linalg_ops

-

MatrixDiag

array_ops

Returns a batched diagonal tensor with a given batched diagonal values.

MatrixDiagPart

array_ops

Returns the batched diagonal part of a batched tensor.

MatrixInverse

linalg_ops

-

MatrixSetDiag

array_ops

Returns a batched matrix tensor with new batched diagonal values.

MatrixSolve

linalg_ops

-

MatrixSolveLs

linalg_ops

-

MatrixTriangularSolve

linalg_ops

-

Max

math_ops

Computes the maximum of elements across dimensions of a tensor.

Maximum

math_ops

Returns the max of x and y (i.e.

MaxPool

nn_ops

Performs max pooling on the input.

MaxPoolV2

nn_ops

Performs max pooling on the input.

MaxPool3D

nn_ops

Performs 3D max pooling on the input.

MaxPoolWithArgmax

nn_ops

Performs max pooling on the input and outputs both max values and indices.

Mean

math_ops

Computes the mean of elements across dimensions of a tensor.

Merge

control_flow_ops

Forwards the value of an available tensor from inputs to output.

Min

math_ops

Computes the minimum of elements across dimensions of a tensor.

Minimum

math_ops

Returns the min of x and y (i.e.

MirrorPad

array_ops

Pads a tensor with mirrored values.

MirrorPadGrad

array_ops

-

Mod

math_ops

Returns element-wise remainder of division.

Mul

math_ops

-

Multinomial

random_ops

Draws samples from a multinomial distribution.

Neg

math_ops

-

NextIteration

control_flow_ops

Makes its input available to the next iteration.

NoOp

no_op

Does nothing.

NotEqual

math_ops

Returns the truth value of (x != y) element-wise.

NthElement

nn_ops

Finds values of the n-th order statistic for the last dimension.

OneHot

array_ops

Returns a one-hot tensor.

OnesLike

array_ops

Returns a tensor of ones with the same shape and type as x.

Pack

array_ops

-

Pad

array_ops

-

ParallelConcat

array_ops

-

ParameterizedTruncatedNormal

random_ops

Outputs random values from a normal distribution.

Placeholder

array_ops

-

PlaceholderWithDefault

array_ops

-

PopulationCount

bitwise_ops

-

Pow

math_ops

Computes the power of one value to another.

PreventGradient

array_ops

-

Prod

math_ops

Computes the product of elements across dimensions of a tensor.

Qr

linalg_ops

-

RandomGamma

random_ops

Outputs random values from the Gamma distribution(s) described by alpha.

RandomGammaGrad

random_ops

-

RandomShuffle

random_ops

Randomly shuffles a tensor along its first dimension.

RandomStandardNormal

random_ops

-

RandomUniform

random_ops

Outputs random values from a uniform distribution.

Range

math_ops

Creates a sequence of numbers.

RandomUniformInt

random_ops

Outputs random integers from a uniform distribution.

Rank

array_ops

Returns the rank of a tensor.

ReadVariableOp

resource_variable_ops

-

RealDiv

math_ops

Returns x / y element-wise for real types.

Reciprocal

math_ops

Computes the reciprocal of x element-wise.

RefEnter

control_flow_ops

-

RefExit

control_flow_ops

-

RefMerge

control_flow_ops

-

RefNextIteration

control_flow_ops

Makes its input available to the next iteration.

RefSwitch

control_flow_ops

Forwards the ref tensor data to the output port determined by pred.

Relu

nn_ops

Computes rectified linear: max(features, 0).

Relu6

nn_ops

Computes rectified linear 6: min(max(features, 0), 6).

Reshape

array_ops

Reshapes a tensor.

ReverseSequence

array_ops

Reverses variable length slices.

ReverseV2

array_ops

-

RightShift

bitwise_ops

-

Rint

math_ops

Returns element-wise integer closest to x.

Round

math_ops

Rounds the values of a tensor to the nearest integer, element-wise.

Rsqrt

math_ops

Computes reciprocal of square root of x element-wise.

SegmentMax

math_ops

Computes the maximum along segments of a tensor.

Select

math_ops

-

Selu

nn_ops

Computes scaled exponential linear: scale * alpha * (exp(features) - 1).

Shape

array_ops

Returns the shape of a tensor.

ShapeN

array_ops

Returns shape of tensors.

Sigmoid

math_ops

Computes sigmoid of x element-wise.

Sign

math_ops

Returns an element-wise indication of the sign of a number.

Sin

math_ops

Computes sin of x element-wise.

Sinh

math_ops

Computes hyperbolic sine of x element-wise.

Size

array_ops

Returns the size of a tensor.

Slice

array_ops

Return a slice from 'input'.

Snapshot

array_ops

Returns a copy of the input tensor.

Softmax

nn_ops

Computes softmax activations.

Softplus

nn_ops

Computes softplus: log(exp(features) + 1).

Softsign

nn_ops

Computes softsign: features / (abs(features) + 1).

SpaceToBatch

array_ops

SpaceToBatch for 4-D tensors of type T.

SpaceToBatchND

array_ops

SpaceToBatch for N-D tensors of type T.

SpaceToDepth

array_ops

SpaceToDepth for tensors of type T.

Split

array_ops

Splits a tensor into num_split tensors along one dimension.

SplitV

array_ops

Splits a tensor into num_split tensors along one dimension.

Sqrt

math_ops

Computes square root of x element-wise.

Square

math_ops

Computes square of x element-wise.

SquaredDifference

math_ops

Returns (x - y)(x - y) element-wise.

Squeeze

array_ops

Removes dimensions of size 1 from the shape of a tensor.

StatelessMultinomial

stateless_random_ops

-

StopGradient

array_ops

Stops gradient computation.

StridedSlice

array_ops

Return a strided slice from input.

Sub

math_ops

-

Sum

math_ops

Computes the sum of elements across dimensions of a tensor.

Svd

linalg_ops

-

Switch

control_flow_ops

Forwards data to the output port determined by pred.

Tan

math_ops

Computes tan of x element-wise.

Tanh

math_ops

Computes hyperbolic tangent of x element-wise.

Tile

array_ops

Constructs a tensor by tiling a given tensor.

TopK

nn_ops

Finds values and indices of the k largest elements for the last dimension.

TopKV2

nn_ops

-

Transpose

array_ops

Shuffle dimensions of x according to a permutation.

TruncateDiv

math_ops

Returns x / y element-wise for integer types.

TruncatedNormal

random_ops

Outputs random values from a truncated normal distribution.

TruncateMod

math_ops

Returns element-wise remainder of division.

Unbatch

batch_ops

-

UnbatchGrad

batch_ops

-

Unique

array_ops

Finds unique elements in a 1-D tensor.

UniqueWithCounts

array_ops

Finds unique elements in a 1-D tensor.

Unpack

array_ops

-

UnravelIndex

array_ops

Converts a flat index or array of flat indices into a tuple of.

UnsortedSegmentMin

math_ops

Computes the minimum along segments of a tensor.

UnsortedSegmentProd

math_ops

Computes the product along segments of a tensor.

UnsortedSegmentSum

math_ops

Computes the sum along segments of a tensor.

UpperBound

array_ops

-

Variable

state_ops

Holds state in the form of a tensor that persists across steps.

Where

array_ops

Returns locations of nonzero / true values in a tensor.

Xdivy

math_ops

Returns 0 if x == 0, and x / y otherwise, elementwise.

Xlogy

math_ops

Returns 0 if x == 0, and x * log(y) otherwise, elementwise.

ZerosLike

array_ops

Returns a tensor of zeros with the same shape and type as x.

Zeta

math_ops

Compute the Hurwitz zeta function \((x, q)\).

_Retval

function_ops

-

LeakyRelu

nn_ops

-

FusedBatchNormV3

nn_ops/mkl_nn_ops

-

搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词