InitConstValue
功能说明
初始化LocalTensor(TPosition为A1/A2/B1/B2)为某一个具体的数值。
函数原型
template <typename T>
__aicore__ inline void InitConstValue(const LocalTensor<T> &dstLocal, const InitConstValueParams<T> &InitConstValueParams);
参数说明
参数名称 |
输入/输出 |
含义 |
|---|---|---|
dstLocal |
输出 |
目的操作数,结果矩阵,类型为LocalTensor,支持的TPosition为A1/A2/B1/B2。 Atlas 训练系列产品,支持的数据类型为:half Atlas推理系列产品AI Core,支持的数据类型为:half Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/int16_t/uint16_t/bfloat16_t/float/int32_t/uint32_t |
InitConstValueParams |
输入 |
初始化相关参数,类型为InitConstValueParams,结构体具体定义为: struct InitConstValueParams
{
uint16_t repeatTimes;
uint16_t blockNum;
uint16_t dstGap;
T initValue;
};
参数说明请参考表2。 Atlas 训练系列产品只支持配置repeatTimes,initValue,其他参数配置无效 Atlas推理系列产品AI Core只支持配置repeatTimes,initValue,其他参数配置无效 Atlas A2训练系列产品/Atlas 800I A2推理产品支持配置所有参数 |
参数名称 |
含义 |
|---|---|
repeatTimes |
迭代次数。取值范围:repeatTimes∈[0, 16383] 。默认值为0。 Atlas 训练系列产品:每次迭代处理512B数据; Atlas推理系列产品AI Core:每次迭代处理512B数据; Atlas A2训练系列产品/Atlas 800I A2推理产品:
|
blockNum |
每次迭代初始化的数据块个数,取值范围:blockNum∈[0, 32767] 。默认值为0。
|
dstGap |
目的操作数前一个迭代结束地址到后一个迭代起始地址之间的距离。
取值范围:dstGap∈[0, 32767] 。默认值为0。 |
initValue |
初始化的value值,支持的数据类型与dstLocal保持一致。 |
注意事项
- 操作数地址偏移对齐要求请参见通用约束。
支持的型号
Atlas 训练系列产品
Atlas推理系列产品AI Core
Atlas A2训练系列产品/Atlas 800I A2推理产品
调用示例
#include "kernel_operator.h"
namespace AscendC {
template <typename dst_T, typename fmap_T, typename weight_T, typename dstCO1_T> class KernelCubeMmad {
public:
__aicore__ inline KernelCubeMmad()
{
C0 = 32 / sizeof(fmap_T);
C1 = channelSize / C0;
coutBlocks = (Cout + 16 - 1) / 16;
ho = H - dilationH * (Kh - 1);
wo = W - dilationW * (Kw - 1);
howo = ho * wo;
howoRound = ((howo + 16 - 1) / 16) * 16;
featureMapA1Size = C1 * H * W * C0; // shape: [C1, H, W, C0]
weightA1Size = C1 * Kh * Kw * Cout * C0; // shape: [C1, Kh, Kw, Cout, C0]
featureMapA2Size = howoRound * (C1 * Kh * Kw * C0);
weightB2Size = (C1 * Kh * Kw * C0) * coutBlocks * 16;
m = howo;
k = C1 * Kh * Kw * C0;
n = Cout;
biasSize = Cout; // shape: [Cout]
dstSize = coutBlocks * howo * 16; // shape: [coutBlocks, howo, 16]
dstCO1Size = coutBlocks * howoRound * 16;
fmRepeat = featureMapA2Size / (16 * C0);
weRepeat = weightB2Size / (16 * C0);
}
__aicore__ inline void Init(__gm__ uint8_t* fmGm, __gm__ uint8_t* weGm, __gm__ uint8_t* biasGm,
__gm__ uint8_t* dstGm)
{
fmGlobal.SetGlobalBuffer((__gm__ fmap_T*)fmGm);
weGlobal.SetGlobalBuffer((__gm__ weight_T*)weGm);
biasGlobal.SetGlobalBuffer((__gm__ dstCO1_T*)biasGm);
dstGlobal.SetGlobalBuffer((__gm__ dst_T*)dstGm);
pipe.InitBuffer(inQueueFmA1, 1, featureMapA1Size * sizeof(fmap_T));
pipe.InitBuffer(inQueueFmA2, 1, featureMapA2Size * sizeof(fmap_T));
pipe.InitBuffer(inQueueWeB1, 1, weightA1Size * sizeof(weight_T));
pipe.InitBuffer(inQueueWeB2, 1, weightB2Size * sizeof(weight_T));
pipe.InitBuffer(inQueueBiasA1, 1, biasSize * sizeof(dstCO1_T));
pipe.InitBuffer(outQueueCO1, 1, dstCO1Size * sizeof(dstCO1_T));
}
__aicore__ inline void Process()
{
CopyIn();
Split();
Compute();
CopyOut();
}
private:
__aicore__ inline void CopyIn()
{
LocalTensor<fmap_T> featureMapA1 = inQueueFmA1.AllocTensor<fmap_T>();
LocalTensor<weight_T> weightB1 = inQueueWeB1.AllocTensor<weight_T>();
LocalTensor<dstCO1_T> biasA1 = inQueueBiasA1.AllocTensor<dstCO1_T>();
InitConstValue(featureMapA1, {1, static_cast<uint16_t>(featureMapA1Size * sizeof(fmap_T) / 32), 0, 1});
InitConstValue(weightB1, {1, static_cast<uint16_t>(weightA1Size * sizeof(weight_T) / 32), 0, 2});
DataCopy(biasA1, biasGlobal, { 1, static_cast<uint16_t>(biasSize * sizeof(dstCO1_T) / 32), 0, 0 });
inQueueFmA1.EnQue(featureMapA1);
inQueueWeB1.EnQue(weightB1);
inQueueBiasA1.EnQue(biasA1);
}
__aicore__ inline void Split()
{
LocalTensor<fmap_T> featureMapA1 = inQueueFmA1.DeQue<fmap_T>();
LocalTensor<weight_T> weightB1 = inQueueWeB1.DeQue<weight_T>();
LocalTensor<fmap_T> featureMapA2 = inQueueFmA2.AllocTensor<fmap_T>();
LocalTensor<weight_T> weightB2 = inQueueWeB2.AllocTensor<weight_T>();
InitConstValue(featureMapA2, {1, static_cast<uint16_t>(featureMapA2Size * sizeof(fmap_T) / 512), 0, 1});
InitConstValue(weightB2, { 1, static_cast<uint16_t>(weightB2Size * sizeof(weight_T) / 512), 0, 2});
inQueueFmA2.EnQue<fmap_T>(featureMapA2);
inQueueWeB2.EnQue<weight_T>(weightB2);
inQueueFmA1.FreeTensor(featureMapA1);
inQueueWeB1.FreeTensor(weightB1);
}
__aicore__ inline void Compute()
{
LocalTensor<fmap_T> featureMapA2 = inQueueFmA2.DeQue<fmap_T>();
LocalTensor<weight_T> weightB2 = inQueueWeB2.DeQue<weight_T>();
LocalTensor<dstCO1_T> dstCO1 = outQueueCO1.AllocTensor<dstCO1_T>();
LocalTensor<dstCO1_T> biasA1 = inQueueBiasA1.DeQue<dstCO1_T>();
Mmad(dstCO1, featureMapA2, weightB2, biasA1, { m, n, k, true, 0, false, false, false });
outQueueCO1.EnQue<dstCO1_T>(dstCO1);
inQueueFmA2.FreeTensor(featureMapA2);
inQueueWeB2.FreeTensor(weightB2);
inQueueBiasA1.FreeTensor(biasA1);
}
__aicore__ inline void CopyOut()
{
LocalTensor<dstCO1_T> dstCO1 = outQueueCO1.DeQue<dstCO1_T>();
FixpipeParamsV220 fixpipeParams;
fixpipeParams.nSize = coutBlocks * 16;
fixpipeParams.mSize = howo;
fixpipeParams.srcStride = howo;
fixpipeParams.dstStride = howo * BLOCK_CUBE * sizeof(dst_T) / ONE_BLK_SIZE;
fixpipeParams.quantPre = deqMode;
Fixpipe<dst_T, dstCO1_T, CFG_NZ>(dstGlobal, dstCO1, fixpipeParams);
outQueueCO1.FreeTensor(dstCO1);
}
private:
TPipe pipe;
// feature map queue
TQue<QuePosition::A1, 1> inQueueFmA1;
TQue<QuePosition::A2, 1> inQueueFmA2;
// weight queue
TQue<QuePosition::B1, 1> inQueueWeB1;
TQue<QuePosition::B2, 1> inQueueWeB2;
// bias queue
TQue<QuePosition::A1, 1> inQueueBiasA1;
// dst queue
TQue<QuePosition::CO1, 1> outQueueCO1;
GlobalTensor<fmap_T> fmGlobal;
GlobalTensor<weight_T> weGlobal;
GlobalTensor<dst_T> dstGlobal;
GlobalTensor<dstCO1_T> biasGlobal;
uint16_t channelSize = 32;
uint16_t H = 4, W = 4;
uint8_t Kh = 2, Kw = 2;
uint16_t Cout = 16;
uint16_t C0, C1;
uint8_t dilationH = 2, dilationW = 2;
uint16_t coutBlocks, ho, wo, howo, howoRound;
uint32_t featureMapA1Size, weightA1Size, featureMapA2Size, weightB2Size, biasSize, dstSize, dstCO1Size;
uint16_t m, k, n;
uint8_t fmRepeat, weRepeat;
QuantMode_t deqMode = QuantMode_t::F322F16;
};
} // namespace AscendC
extern "C" __global__ __aicore__ void cube_mmad_simple_kernel(__gm__ uint8_t *fmGm, __gm__ uint8_t *weGm,
__gm__ uint8_t *biasGm, __gm__ uint8_t *dstGm)
{
AscendC::KernelCubeMmad<dst_type, fmap_type, weight_type, dstCO1_type> op;
op.Init(fmGm, weGm, biasGm, dstGm);
op.Process();
}