昇腾社区首页
中文
注册

asdInterpWithCoeff

  • 安全声明:

    该样例旨在提供快速上手、开发和调试算子的最小化实现,其核心目标是使用最精简的代码展示算子的核心功能,而非提供生产级的安全保障。

    不推荐用户直接将样例作为业务代码,若用户将示例代码应用在自身的真实业务场景中且发生了安全问题,则需用户自行承担。

  • asdInterpWithCoeff算子的调用示例:
    #include <iostream>
    #include <complex>
    #include <vector>
    #include "interp_api.h"
    #include "acl/acl.h"
    #include "acl_meta.h"
    
    using namespace AsdSip;
    
    int64_t GetShapeSize(const std::vector<int64_t> &shape)
    {
        int64_t shapeSize = 1;
        for (auto i : shape) {
            shapeSize *= i;
        }
        return shapeSize;
    }
    
    int Init(int32_t deviceId, aclrtStream *stream)
    {
        // 固定写法,acl初始化
        aclInit(nullptr);
        aclrtSetDevice(deviceId);
        aclrtCreateStream(stream);
        return 0;
    }
    
    template <typename T>
    int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
        aclDataType dataType, aclTensor **tensor)
    {
        auto size = GetShapeSize(shape) * sizeof(T) * 2; // 2 : complex
        // 调用aclrtMalloc申请device侧内存
        aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
        // 调用aclrtMemcpy将host侧数据复制到device侧内存上
        aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    
        // 计算连续tensor的strides
        std::vector<int64_t> strides(shape.size(), 1);
        for (int64_t i = shape.size() - 2; i >= 0; i--) {
            strides[i] = shape[i + 1] * strides[i + 1];
        }
    
        // 调用aclCreateTensor接口创建aclTensor
        *tensor = aclCreateTensor(shape.data(),
            shape.size(),
            dataType,
            strides.data(),
            0,
            aclFormat::ACL_FORMAT_ND,
            shape.data(),
            shape.size(),
            *deviceAddr);
        return 0;
    }
    
    int main(int argc, char **argv)
    {
        // 设置算子使用的device id
        int deviceId = 0;
        //(固定写法)创造执行流
        aclrtStream stream;
        Init(deviceId, &stream);
    
        // 创造tensor的Host侧数据
        int64_t batch = 1;
        int64_t nRs = 2;
        int64_t totalSubcarrier = 32;
        int64_t nSingal = 14;
    
        int64_t xSize = batch * nRs * totalSubcarrier * 2;
        std::vector<float> tensorInXData;
        tensorInXData.reserve(xSize);
        for (int64_t i = 0; i < xSize; i++) {
            tensorInXData[i] = 1.0 + i;
        }
    
        int64_t coeffSize = batch * (nSingal - nRs) * nRs * 2;
        std::vector<float> coeffData;
        coeffData.reserve(xSize);
        for (int64_t i = 0; i < coeffSize; i++) {
            coeffData[i] = 1;
        }
    
        int64_t resultSize = batch * (nSingal - nRs) * totalSubcarrier * 2;
        std::vector<float> resultData;
        resultData.reserve(resultSize);
        for (int64_t i = 0; i < resultSize; i++) {
            resultData[i] = 2;
        }
    
        // int64_t xSize = batch * nRs * totalSubcarrier;
        // std::vector<std::complex<float>> tensorInXData(xSize, std::complex<float>(0, 0));
        // for (int i = 0; i < xSize; i++) {
        //     tensorInXData[i] = std::complex<float>(i * 2, i * 2 + 1);
        // }
        // int64_t coeffSize = batch * (nSingal - nRs) * nRs;
        // std::vector<std::complex<float>> coeffData(xSize, std::complex<float>(0, 0));
        // for (int i = 0; i < coeffSize; i++) {
        //     coeffData[i] = std::complex<float>(1, 1);
        // }
        // int64_t resultSize = batch * (nSingal - nRs) * totalSubcarrier;
        // std::vector<std::complex<float>> resultData(xSize, std::complex<float>(0, 0));
        // for (int i = 0; i < resultSize; i++) {
        //     resultData[i] = std::complex<float>(2, 2);
        // }
    
        std::cout << "------- input x -------" << std::endl;
        for (int64_t i = 0; i < xSize; i++) {
            std::cout << tensorInXData[i] << " ";
        }
        std::cout << std::endl;
    
        std::cout << "------- input coeff -------" << std::endl;
        for (int64_t i = 0; i < coeffSize; i++) {
            std::cout << coeffData[i] << " ";
        }
        std::cout << std::endl;
    
        // 创造输入/输出tensor
        aclTensor *inputX = nullptr;
        aclTensor *inputCoeff = nullptr;
        aclTensor *result = nullptr;
        void *inputXDeviceAddr = nullptr;
        void *inputYDeviceAddr = nullptr;
        void *resultDeviceAddr = nullptr;
        CreateAclTensor(tensorInXData, {batch, nRs, totalSubcarrier}, &inputXDeviceAddr, aclDataType::ACL_COMPLEX64, &inputX);
        CreateAclTensor(coeffData, {batch, nSingal-nRs, nRs}, &inputYDeviceAddr, aclDataType::ACL_COMPLEX64, &inputCoeff);
        CreateAclTensor(resultData, {batch, nSingal-nRs, totalSubcarrier}, &resultDeviceAddr, aclDataType::ACL_COMPLEX64, &result);
    
        size_t lwork = 0;
        void *buffer = nullptr;
        AsdSip::asdInterpWithCoeffGetWorkspaceSize(lwork);
        if (lwork > 0) {
            aclrtMalloc(&buffer, static_cast<int64_t>(lwork), ACL_MEM_MALLOC_HUGE_FIRST);
        }
        asdInterpWithCoeff(inputX, inputCoeff, result, stream, buffer);
        aclrtSynchronizeStream(stream);
        // 将输出tensor的Device侧数据复制到Host侧内存上
        aclrtMemcpy(resultData.data(),
            resultSize * sizeof(float),
            resultDeviceAddr,
            resultSize * sizeof(float),
            ACL_MEMCPY_DEVICE_TO_HOST);
    
        std::cout << "------- result -------" << std::endl;
        for (int64_t i = 0; i < nSingal - nRs; i++) {
            for (int64_t j = 0; j < totalSubcarrier * 2; j++) {
                std::cout << resultData[i * totalSubcarrier * 2 + j] << " ";
            }
            std::cout << std::endl;
        }
    
        // 资源释放
        aclDestroyTensor(inputX);
        aclDestroyTensor(inputCoeff);
        aclDestroyTensor(result);
        aclrtFree(inputXDeviceAddr);
        aclrtFree(inputYDeviceAddr);
        aclrtFree(resultDeviceAddr);
        if (lwork > 0) {
            aclrtFree(buffer);
        }
    
        // 调度算子后重置算子使用的deviceId
        aclrtDestroyStream(stream);
        aclrtResetDevice(deviceId);
        aclFinalize();
        return 0;
    }