asdConvolve_complex64
- 安全声明:
该样例旨在提供快速上手、开发和调试算子的最小化实现,其核心目标是使用最精简的代码展示算子的核心功能,而非提供生产级的安全保障。
不推荐用户直接将样例作为业务代码,若用户将示例代码应用在自身的真实业务场景中且发生了安全问题,则需用户自行承担。
- asdConvolve_complex64算子的调用示例:
#include <iostream> #include "asdsip.h" #include "filter_api.h" #include "acl/acl.h" #include "acl/acl_base.h" #include "acl_meta.h" #include <complex> #include <vector> #include <time.h> using namespace AsdSip; #define ASD_STATUS_CHECK(err) \ do { \ AsdSip::AspbStatus err_ = (err); \ if (err_ != AsdSip::ErrorType::ACL_SUCCESS) { \ std::cout << "Execute failed." << std::endl; \ exit(-1); \ } \ } while (0) #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t> &shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } int Init(int32_t deviceId, aclrtStream *stream) { // 固定写法,acl初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr, aclDataType dataType, aclTensor **tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据复制到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } template <typename T> void printTensor(std::vector<T> tensorData, int64_t tensorSize) { for (int64_t i = 0; i < tensorSize; i++) { std::cout << tensorData[i] << " "; } std::cout << std::endl; } int main(int argc, char **argv) { int deviceId = 0; aclrtStream stream; aclmdlRI modelRI; auto ret = Init(deviceId, &stream); CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); int64_t signalLen = 128; int64_t kernelLen = 8; int64_t batchCount = 2; std::vector<std::complex<float>> tensorSignalData; tensorSignalData.reserve(signalLen * batchCount); std::vector<float> tensorKernelData; tensorKernelData.reserve(kernelLen); for (int64_t i = 0; i < signalLen * batchCount; i++) { tensorSignalData[i] = {1.0, 1.0}; } for (int64_t i = 0; i < kernelLen; i++) { tensorKernelData[i] = 1.0 + i; } std::vector<std::complex<float>> tensorOutData; tensorOutData.reserve(signalLen * batchCount); for (int64_t i = 0; i < signalLen * batchCount; i++) { tensorOutData[i] = {-1.0, -1.0} ; } std::vector<int64_t> signalShape = {batchCount, signalLen}; std::vector<int64_t> kernelShape = {kernelLen}; std::vector<int64_t> resultShape = {batchCount, signalLen}; aclTensor *signal = nullptr; aclTensor *kernel = nullptr; aclTensor *output = nullptr; void *signalDeviceAddr = nullptr; void *kernelDeviceAddr = nullptr; void *outputDeviceAddr = nullptr; ret = CreateAclTensor<std::complex<float>>( tensorSignalData, signalShape, &signalDeviceAddr, aclDataType::ACL_COMPLEX64, &signal); CHECK_RET(ret == ::ACL_SUCCESS, return ret); ret = CreateAclTensor<float>( tensorKernelData, kernelShape, &kernelDeviceAddr, aclDataType::ACL_FLOAT, &kernel); CHECK_RET(ret == ::ACL_SUCCESS, return ret); ret = CreateAclTensor<std::complex<float>>( tensorOutData, resultShape, &outputDeviceAddr, aclDataType::ACL_COMPLEX64, &output); CHECK_RET(ret == ::ACL_SUCCESS, return ret); size_t lwork = 0; AsdSip::asdConvolveGetWorkspaceSize(signalLen, kernelLen, lwork); void *buffer = nullptr; std::cout << "lwork = " << lwork << std::endl; if (lwork > 0) { ret = aclrtMalloc(&buffer, static_cast<int64_t>(lwork), ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } auto convolve_func = [signal, kernel, output, stream, buffer]() { int IterNum = 1000; for (int i = 0; i < IterNum; i++) { ASD_STATUS_CHECK(AsdSip::asdConvolve(signal, kernel, output, asdConvolveMode_t::ASD_CONVOLVE_SAME, stream, buffer)); } }; aclmdlRICaptureBegin(stream, ACL_MODEL_RI_CAPTURE_MODE_GLOBAL); convolve_func(); aclmdlRICaptureEnd(stream, &modelRI); struct timespec start, end; clock_gettime(CLOCK_MONOTONIC, &start); aclmdlRIExecuteAsync(modelRI, stream); aclrtSynchronizeStream(stream); clock_gettime(CLOCK_MONOTONIC, &end); uint64_t elapsed_time = (end.tv_sec - start.tv_sec) * 1000000000 + (end.tv_nsec - start.tv_nsec); printf("ACL graph Execution time: %llu ms\n", elapsed_time / 1000 / 1000); clock_gettime(CLOCK_MONOTONIC, &start); convolve_func(); aclrtSynchronizeStream(stream); clock_gettime(CLOCK_MONOTONIC, &end); elapsed_time = (end.tv_sec - start.tv_sec) * 1000000000 + (end.tv_nsec - start.tv_nsec); printf("normal Execution time: %llu ms\n", elapsed_time / 1000 / 1000); aclmdlRIDestroy(modelRI); aclDestroyTensor(signal); aclDestroyTensor(kernel); aclDestroyTensor(output); aclrtFree(signalDeviceAddr); aclrtFree(kernelDeviceAddr); aclrtFree(outputDeviceAddr); aclrtDestroyStream(stream); aclrtResetDevice(deviceId); aclFinalize(); return 0; }
父主题: Filter