昇腾社区首页
中文
注册
开发者
下载

asdConvolve_complex32

  • 安全声明:

    该样例旨在提供快速上手、开发和调试算子的最小化实现,其核心目标是使用最精简的代码展示算子的核心功能,而非提供生产级的安全保障。

    不推荐用户直接将样例作为业务代码,若用户将示例代码应用在自身的真实业务场景中且发生了安全问题,则需用户自行承担。

  • asdConvolve_complex32算子的调用示例:
    #include <iostream>
    #include "asdsip.h"
    #include "filter_api.h"
    #include "acl/acl.h"
    #include "acl/acl_base.h"
    #include "acl_meta.h"
    #include <complex>
    #include <vector>
    
    using namespace AsdSip;
    
    using half = op::fp16_t;
    
    #define ASD_STATUS_CHECK(err)                                                \
        do {                                                                     \
            AsdSip::AspbStatus err_ = (err);                                     \
            if (err_ != AsdSip::ACL_SUCCESS) {                                      \
                std::cout << "Execute failed." << std::endl; \
                exit(-1);                                                        \
            }                                                                    \
        } while (0)
    
    #define CHECK_RET(cond, return_expr) \
        do {                             \
            if (!(cond)) {               \
                return_expr;             \
            }                            \
        } while (0)
    
    #define LOG_PRINT(message, ...)         \
        do {                                \
            printf(message, ##__VA_ARGS__); \
        } while (0)
    
    int64_t GetShapeSize(const std::vector<int64_t> &shape)
    {
        int64_t shapeSize = 1;
        for (auto i : shape) {
            shapeSize *= i;
        }
        return shapeSize;
    }
    
    int Init(int32_t deviceId, aclrtStream *stream)
    {
        // 固定写法,acl初始化
        auto ret = aclInit(nullptr);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
        ret = aclrtSetDevice(deviceId);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
        ret = aclrtCreateStream(stream);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
        return 0;
    }
    
    template <typename T>
    int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
        aclDataType dataType, aclTensor **tensor)
    {
        auto size = GetShapeSize(shape) * sizeof(T);
        // 调用aclrtMalloc申请device侧内存
        auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
        // 调用aclrtMemcpy将host侧数据复制到device侧内存上
        ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
    
        // 计算连续tensor的strides
        std::vector<int64_t> strides(shape.size(), 1);
        for (int64_t i = shape.size() - 2; i >= 0; i--) {
            strides[i] = shape[i + 1] * strides[i + 1];
        }
    
        // 调用aclCreateTensor接口创建aclTensor
        *tensor = aclCreateTensor(shape.data(),
            shape.size(),
            dataType,
            strides.data(),
            0,
            aclFormat::ACL_FORMAT_ND,
            shape.data(),
            shape.size(),
            *deviceAddr);
        return 0;
    }
    
    template <typename T>
    void printTensor(std::vector<T> tensorData, int64_t tensorSize)
    {
        for (int64_t i = 0; i < tensorSize; i++) {
            std::cout << tensorData[i] << " ";
        }
        std::cout << std::endl;
    }
    
    
    int main(int argc, char **argv)
    {
    
        int deviceId = 0;
    
        aclrtStream stream;
        auto ret = Init(deviceId, &stream);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
    
        int64_t signalLen = 128; // 26208
        int64_t kernelLen = 32;
        int64_t batchCount = 2; // 768
    
        std::vector<std::complex<half>> tensorSignalData;
        tensorSignalData.reserve(signalLen * batchCount);
    
        std::vector<half> tensorKernelData;
        tensorKernelData.reserve(kernelLen);
    
        for (int64_t i = 0; i < signalLen * batchCount; i++) {
            tensorSignalData[i] = {(half)1.0, (half)1.0};
        }
    
        for (int64_t i = 0; i < kernelLen; i++) {
            tensorKernelData[i] = (half)(1.0 + i);
            // tensorKernelData[i] = 1.0;
        }
    
        std::vector<std::complex<half>> tensorOutData;
        tensorOutData.reserve(signalLen * batchCount);
    
        for (int64_t i = 0; i < signalLen * batchCount; i++) {
            tensorOutData[i] = {(half)-1.0, (half)-1.0};
        }
    
        std::vector<int64_t> signalShape = {batchCount, signalLen};
        std::vector<int64_t> kernelShape = {kernelLen};
        std::vector<int64_t> resultShape = {batchCount, signalLen};
    
        aclTensor *signal = nullptr;
        aclTensor *kernel = nullptr;
        aclTensor *output = nullptr;
        void *signalDeviceAddr = nullptr;
        void *kernelDeviceAddr = nullptr;
        void *outputDeviceAddr = nullptr;
    
        ret = CreateAclTensor<std::complex<half>>(
            tensorSignalData, signalShape, &signalDeviceAddr, aclDataType::ACL_COMPLEX32, &signal);
        CHECK_RET(ret == ::ACL_SUCCESS, return ret);
    
        ret = CreateAclTensor<half>(
            tensorKernelData, kernelShape, &kernelDeviceAddr, aclDataType::ACL_FLOAT16, &kernel);
        CHECK_RET(ret == ::ACL_SUCCESS, return ret);
    
        ret = CreateAclTensor<std::complex<half>>(
            tensorOutData, resultShape, &outputDeviceAddr, aclDataType::ACL_COMPLEX32, &output);
        CHECK_RET(ret == ::ACL_SUCCESS, return ret);
    
        size_t lwork = 0;
        AsdSip::asdConvolveGetWorkspaceSize(signalLen, kernelLen, lwork);
        void *buffer = nullptr;
    
        std::cout << "lwork = " << lwork << std::endl;
        if (lwork > 0) {
            ret = aclrtMalloc(&buffer, static_cast<int64_t>(lwork), ACL_MEM_MALLOC_HUGE_FIRST);
            CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
        }
    
        ASD_STATUS_CHECK(AsdSip::asdConvolve(signal, kernel, output, asdConvolveMode_t::ASD_CONVOLVE_SAME, stream, buffer));
    
        ret = aclrtSynchronizeStream(stream);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
    
        ret = aclrtMemcpy(tensorOutData.data(),
            signalLen * batchCount * sizeof(std::complex<half>),
            outputDeviceAddr,
            signalLen * batchCount * sizeof(std::complex<half>),
            ACL_MEMCPY_DEVICE_TO_HOST);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
    
        std::cout << "------- result -------" << std::endl;
        for (int batchIdx = 0; batchIdx < batchCount; batchIdx++) {
            for (int i = 0; i < signalLen; i++) {
                std::cout << "(" << (float)tensorOutData[batchIdx * signalLen + i].real() << ","
                          << (float)tensorOutData[batchIdx * signalLen + i].imag() << ")"
                          << " ";
            }
            std::cout << std::endl;
        }
    
        aclDestroyTensor(signal);
        aclDestroyTensor(kernel);
        aclDestroyTensor(output);
        aclrtFree(signalDeviceAddr);
        aclrtFree(kernelDeviceAddr);
        aclrtFree(outputDeviceAddr);
    
        aclrtDestroyStream(stream);
        aclrtResetDevice(deviceId);
        aclFinalize();
        return 0;
    }