aclnnMoeTokenPermuteWithRoutingMapGrad
支持的产品型号
Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件 Atlas A3 训练系列产品/Atlas A3 推理系列产品
功能说明
- 算子功能:aclnnMoeTokenPermuteWithRoutingMap的反向传播。
- 计算公式:
- probs不为None:
- paddedMode为true时
- paddedMode为false时
- probs为None:
函数原型
每个算子分为两段式接口,必须先调用“aclnnMoeTokenPermuteWithRoutingMapGradGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnMoeTokenPermuteWithRoutingMapGrad”接口执行计算。
aclnnStatus aclnnMoeTokenPermuteWithRoutingMapGradGetWorkspaceSize(const aclTensor *permutedTokenOutputGrad, const aclTensor *permutedProbsOutputGradOptional, const aclTensor *sortedIndices, const aclTensor *routingMapOptional, int64_t experts_num, int64_t tokens_num, bool dropAndPad, aclTensor *tokensGradOut, aclTensor *probsGradOutOptional, uint64_t *workspaceSize, aclOpExecutor **executor)
aclnnStatus aclnnMoeTokenPermuteWithRoutingMapGrad(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
aclnnMoeTokenPermuteWithRoutingMapGradGetWorkspaceSize
参数说明:
- permutedTokenOutputGrad(aclTensor *,计算输入):Device侧的aclTensor,正向输出permutedTokens的梯度,要求为一个维度为2D的Tensor,非droppad模式要求shape为一个2D的(tokens_num * topK_num,hidden_size),droppad模式要求shape为一个2D的(experts_num * capacity,hidden_size),其中topK_num表示每个token选中的专家数量,capacity表示每个专家选中的token数量。数据类型支持BFLOAT16、FLOAT16、FLOAT32,数据格式要求为ND。支持非连续的Tensor,不支持空tensor。
- permutedProbsOutputGradOptional(aclTensor *,计算输入):Device侧的aclTensor,可选输入,不传则表示不需要计算probsGradOutOptional,非droppad模式要求shape为一个1D的(tokens_num * topK_num),droppad模式要求shape为一个1D的(experts_num * capacity),其中topK_num表示每个token选中的专家数量,capacity表示每个专家选中的token数量。数据类型支持BFLOAT16、FLOAT16、FLOAT32,数据格式要求为ND。支持非连续的Tensor。
- sortedIndices(aclTensor *,计算输入):Device侧的aclTensor,非droppad模式要求shape为一个1D的(tokens_num * topK_num,),数据类型支持INT32,数据格式要求为ND。索引取值范围[0,tokens_num * topK_num - 1], droppad模式要求shape为一个1D的(experts_num * capacity),数据类型支持INT32,数据格式要求为ND。索引取值范围[0,experts_num * capacity - 1]。支持非连续的Tensor。
- routingMap(aclTensor *,计算输入):Device侧的aclTensor,代表token到expert的映射关系,要求shape为一个2D的(tokens_num,experts_num),数据类型支持INT8、bool。当数据类型为INT8,取值支持0、1,当数据类型为bool,取值支持true、false,数据格式要求为ND。支持非连续的Tensor。非droppad模式要求每行中包含topK个true 或 1。
- experts_num(int64_t,计算输入):表示参与运算的专家个数。
- tokens_num(int64_t,计算输入):表示参与运算的token个数。
- dropAndPad(bool, 计算输入):true表示开启dropPaddedMode,false表示关闭dropPaddedMode。
- tokensGradOut(aclTensor*,计算输出):输入permutedTokens的梯度,要求是一个2D的Tensor,shape为(tokens_num ,hidden_size)。数据类型同permutedTokenOutputGrad,支持BFLOAT16、FLOAT16、FLOAT32,数据格式要求为ND。不支持非连续的Tensor。
- probsGradOutOptional(aclTensor*,计算输出):输入probs的梯度,可选输出,要求是一个2D的Tensor,shape为(tokens_num,experts_num)。数据类型同permutedProbsOutputGradOptional,支持BFLOAT16、FLOAT16、FLOAT32,数据格式要求为ND。不支持非连续的Tensor。
- workspaceSize(uint64_t*,出参):返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**,出参):返回op执行器,包含了算子计算流程。
返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
161001(ACLNN_ERR_PARAM_NULLPTR): 1. 输入和输出的Tensor是空指针。
161002(ACLNN_ERR_PARAM_INVALID): 1. 输入和输出的数据类型不在支持的范围内。
2. 输入和输出的Shape不在支持的范围内。
aclnnMoeTokenPermuteWithRoutingMapGrad
参数说明:
- workspace(void*,入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnMoeTokenPermuteWithRoutingMapGradGetWorkspaceSize获取。
- executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
- stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
约束说明
非dropPaddedMode 场景topK_num <= 512 不支持混合精度输入,即permutedTokenOutputGrad、permutedProbsOutputGradOptional、tokensGradOut、probsGradOutOptional需要保持相同的数据类型
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include "aclnnop/aclnn_moe_token_permute_with_routing_map_grad.h"
#include <iostream>
#include <vector>
#include <sys/stat.h>
#include <fstream>
#include <fcntl.h>
#include <unistd.h>
#include <cstdio>
#include <cassert>
#include <iomanip>
#include <unistd.h>
#include "acl/acl.h"
#include "aclnn/acl_meta.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape)
{
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
template <typename T>
bool ReadFile(const std::string &filePath, std::vector<int64_t> shape, std::vector<T>& hostData)
{
size_t fileSize = 1;
for (int64_t i : shape){
fileSize *= i;
}
std::ifstream file(filePath, std::ios::binary);
if (!file.is_open()) {
std::cerr << "无法打开文件" << std::endl;
return 1;
}
// 获取文件大小
file.seekg(0, std::ios::end);
file.seekg(0, std::ios::beg);
hostData.reserve(fileSize);
if (file.read(reinterpret_cast<char*>(hostData.data()), fileSize * sizeof(T))) {
} else {
std::cerr << "读取文件失败" << std::endl;
return 1;
}
file.close();
return true;
}
template <typename T>
bool WriteFile(const std::string &filePath, int64_t size, std::vector<T>& hostData)
{
int fd = open(filePath.c_str(), O_RDWR | O_CREAT | O_TRUNC, S_IRUSR | S_IWRITE);
if (fd < 0) {
LOG_PRINT("Open file failed. path = %s", filePath.c_str());
return false;
}
size_t writeSize = write(fd, reinterpret_cast<char*>(hostData.data()), size * sizeof(T));
(void)close(fd);
if (writeSize != size * sizeof(T)) {
LOG_PRINT("Write file Failed.");
return false;
}
return true;
}
void PrintOutResult(std::vector<int64_t>& shape, void** deviceAddr)
{
auto size = GetShapeSize(shape);
std::vector<float> resultData(size, 0);
auto ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), *deviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return);
for (int64_t i = 0; i < 10; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
}
int Init(int32_t deviceId, aclrtStream* stream)
{
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor)
{
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main()
{
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
int64_t num_token = 4096;
int64_t hidden_size = 7168;
int64_t num_expert = 256;
int64_t num_capacity = 16;
std::vector<float> permuted_output_grad_Data(num_expert * num_capacity * hidden_size, 0);
std::vector<int64_t> permuted_output_grad_Shape = {num_expert * num_capacity, hidden_size};
void* permuted_output_grad_Addr = nullptr;
aclTensor* permuted_output_grad = nullptr;
ret = CreateAclTensor(permuted_output_grad_Data, permuted_output_grad_Shape, &permuted_output_grad_Addr,
aclDataType::ACL_FLOAT, &permuted_output_grad);
CHECK_RET(ret == ACL_SUCCESS, return ret);
std::vector<float> permutedProbsOutputGradOptional(num_expert * num_capacity, 0.1);
std::vector<int64_t> permutedProbsOutputGradOptionalShape = {num_expert * num_capacity};
void* permutedProbsOutputGrad_Addr = nullptr;
aclTensor* ppermutedProbsOutputGrad = nullptr;
ret = CreateAclTensor(permutedProbsOutputGradOptional, permutedProbsOutputGradOptionalShape,
&permutedProbsOutputGrad_Addr, aclDataType::ACL_FLOAT, &ppermutedProbsOutputGrad);
CHECK_RET(ret == ACL_SUCCESS, return ret);
std::vector<int> sortedIndicesData(num_expert * num_capacity, 0);
std::vector<int64_t> sortedIndicesShape = {num_expert * num_capacity};
void* sortedIndicesAddr = nullptr;
aclTensor* sortedIndices = nullptr;
ReadFile("./sortedIndices.bin", sortedIndicesShape, sortedIndicesData);
ret = CreateAclTensor(sortedIndicesData, sortedIndicesShape, &sortedIndicesAddr, aclDataType::ACL_INT32,
&sortedIndices);
CHECK_RET(ret == ACL_SUCCESS, return ret);
std::vector<char> routingMapOptionalData(num_token * num_expert, 1);
std::vector<int64_t> routingMapOptionalShape = {num_token , num_expert};
void* routingMapOptionalAddr = nullptr;
aclTensor* proutingMapOptional = nullptr;
ret = CreateAclTensor(routingMapOptionalData, routingMapOptionalShape, &routingMapOptionalAddr,
aclDataType::ACL_INT8, &proutingMapOptional);
CHECK_RET(ret == ACL_SUCCESS, return ret);
std::vector<float> outData(num_token * hidden_size, 0.0f);
std::vector<int64_t> outShape = {num_token, hidden_size};
// std::vector<int64_t> outShape = {num_token};
void* outAddr = nullptr;
aclTensor* out = nullptr;
ret = CreateAclTensor(outData, outShape, &outAddr, aclDataType::ACL_FLOAT, &out);
CHECK_RET(ret == ACL_SUCCESS, return ret);
std::vector<float> outData2(num_token * num_expert, 0.0f);
std::vector<int64_t> outShape2 = {num_token, num_expert};
void* outAddr2 = nullptr;
aclTensor* out2 = nullptr;
ret = CreateAclTensor(outData2, outShape2, &outAddr2, aclDataType::ACL_FLOAT, &out2);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的Api名称
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnMoeTokenPermuteGrad第一段接口
ret = aclnnMoeTokenPermuteWithRoutingMapGradGetWorkspaceSize(permuted_output_grad, ppermutedProbsOutputGrad, sortedIndices, proutingMapOptional, num_expert, num_token, true,
out, out2, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclnnMoeTokenPermuteWithRoutingMapGradGetWorkspaceSize failed. ERROR: %d\n", ret);
return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnMoeTokenPermuteWithRoutingMapGrad第二段接口
ret = aclnnMoeTokenPermuteWithRoutingMapGrad(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMoeTokenPermuteWithRoutingMapGrad failed. ERROR: %d\n", ret);
return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5.获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
PrintOutResult(outShape, &outAddr);
PrintOutResult(outShape2, &outAddr2);
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(permuted_output_grad);
aclDestroyTensor(sortedIndices);
aclDestroyTensor(out);
// 7. 释放device资源
aclrtFree(permuted_output_grad_Addr);
aclrtFree(sortedIndicesAddr);
aclrtFree(outAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}