aclnnGroupedMatmulFinalizeRouting
支持的产品型号
Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件 Atlas A3 训练系列产品/Atlas A3 推理系列产品
功能说明
算子功能:GroupedMatmul和MoeFinalizeRouting的融合算子,GroupedMatmul计算后的输出按照索引做combine动作
函数原型
每个算子分为两段式接口,必须先调用“aclnnGroupedMatmulFinalizeRoutingGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnGroupedMatmulFinalizeRouting”接口执行计算。
aclnnStatus aclnnGroupedMatmulFinalizeRoutingGetWorkspaceSize(const aclTensor *x, aclTensor *w, const aclTensor *scaleOptional, const aclTensor* biasOptional, const aclTensor *pertokenScaleOptional, const aclTensor *groupListOptional, const aclTensor *sharedInputOptional, const aclTensor* logitOptional, const aclTensor *rowIndexOptional, int64_t dtype, float sharedInputWeight, int64_t sharedInputOffset, bool transposeX, bool transposeW, int64_t groupListType, aclTensor *y, uint64_t *workspaceSize, aclOpExecutor **executor)
aclnnStatus aclnnGroupedMatmulFinalizeRouting(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)
aclnnGroupedMatmulFinalizeRoutingGetWorkspaceSize
参数说明:
- x(aclTensor*,计算输入):Device侧的aclTensor,输入x(左矩阵),数据格式支持ND,数据类型支持INT8,shape支持2维,维度为(m, k),维度m的取值范围为[1,16*1024*8],k支持2048。
- w(aclTensor*,计算输入):Device侧的aclTensor,输入weight(右矩阵),数据格式支持ND,数据类型支持INT32(传入数据为INT32,实际按照8个INT4来处理),shape支持三维,当输入为INT32时维度为(e, k, n / 8),输入转为INT4时维度为(e, k, n),e取值范围[1,256],k支持2048,n支持7168。
- scaleOptional(aclTensor*,可选计算输入)可选参数,Device侧的aclTensor,量化参数中的缩放因子,数据格式支持ND,数据类型支持INT64,shape支持三维,维度为(e, 1, n),e、n和w的e、n一致。
- biasOptional(aclTensor*,可选计算输入)可选参数,Device侧的aclTensor,矩阵的偏移,数据格式支持ND,数据类型支持FLOAT32,shape支持二维,维度为(e, n),e、n和w的e、n一致。
- pertokenScaleOptional(aclTensor*,可选计算输入)可选参数,Device侧的aclTensor,矩阵计算的反量化参数,数据格式支持ND,数据类型支持FLOAT32,shape支持一维,维度为(m),m和x的m一致。
- groupListOptional(aclTensor*,可选计算输入):可选参数,Device侧的aclTensor类型,代表输入和输出分组轴方向的matmul大小分布,数据格式支持ND,数据类型支持INT64,shape支持一维,维度为(e),e和w的e一致。
- sharedInputOptional(aclTensor*,可选计算输入):可选参数,Device侧的aclTensor类型,moe计算中共享专家的输出,需要与moe专家的输出进行combine操作数据格式支持ND,数据类型支持BFLOAT16,shape支持二维,维度(batch/dp,n),batch/dp取值范围[1,2*1024],batch取值范围[1,16*1024]。
- logitOptional(aclTensor*,可选计算输入):可选参数,Device侧的aclTensor类型,moe专家对各个token的logit大小,矩阵乘的计算输出与该logit做乘法,然后索引进行combine,数据格式支持ND,数据类型支持FLOAT32,shape支持一维,维度为(m),m和x的m一致。
- rowIndexOptional(aclTensor*,可选计算输入):可选参数,Device侧的aclTensor类型,moe专家输出按照该rowIndex进行combine,其中的值即为combine做scatter add的索引,数据格式支持ND,数据类型支持FLOAT32,shape支持一维,维度为(m),m和x的m一致。
- dtype(int64_t,计算输入):GroupedMatmul计算的输出类型,0:FLOAT32;1:FLOAT16;2:BFLOAT16。仅支持取0。
- sharedInputWeight(float,计算输入):共享专家与moe专家进行combine的系数,sharedInput先与该参数乘,然后在和moe专家结果累加。
- sharedInputOffset(int64_t,计算输入):共享专家输出的在总输出中的偏移。
- transposeX(bool,计算输入):左矩阵是否转置。
- transposeW(bool,计算输入):右矩阵是否转置。
- groupListType(int64_t,计算输入):GroupedMatmul的分组模式:配置为0:cumsum模式,即为前缀和;配置为1:count模式。
- y(aclTensor*,计算输出):数据格式支持ND。
- workspaceSize(uint64_t*,出参):返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**,出参):返回op执行器,包含了算子计算流程。
返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,若出现以下错误码,则对应原因为: - 返回161001(ACLNN_ERR_PARAM_NULLPTR): 1. 传入的x、w、y、biasOptional是空指针。 - 返回161002(ACLNN_ERR_PARAM_INVALID): 1.x、w、scaleOptional、biasOptional、pertokenScaleOptional、groupListOptional、shareInputOptional、logitOptional、rowIndexOptional、shareInputWeight、shareInputOffest、transposeX、transposeW、或y的数据类型和数据格式不在支持的范围内。 2.x、w、scaleOptional、biasOptional、pertokenScaleOptional、groupListOptional、shareInputOptional、logitOptional、rowIndexOptional或y的shape不满足校验条件。 3.x、w、scaleOptional、biasOptional、pertokenScaleOptional、groupListOptional、shareInputOptional、logitOptional、rowIndexOptional或y的shape是空tensor。 4.dtype、sharedInputOffset、transposeX、transposeW、groupListType的取值范围不满足条件
aclnnGroupedMatmulFinalizeRouting
参数说明:
- workspace(void*,入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t*,入参):在Device侧申请的workspace大小,由第一段接口aclnnGroupedMatmulFinalizeRoutingGetWorkspaceSize获取。
- executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
- stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
约束说明
伪量化场景支持类型 输入和输出支持以下数据类型组合:
x | w | scale | bias | pertokenScale | groupList | sharedInput | logit | rowIndex | out |
---|---|---|---|---|---|---|---|---|---|
INT8 | INT4 | INT64 | FLOAT32 | FLOAT32 | INT64 | BFLOAT16 | FLOAT32 | INT64 | FLOAT32 |
- 在该场景中,x的数据格式支持ND,数据类型支持INT8,shape支持2维,维度为(m, k),维度m的取值范围为[1,16*1024*8],k支持2048。
- 在该场景中,w的数据格式支持ND,数据类型支持INT32(传入数据为INT32,实际按照8个INT4来处理),shape支持三维,当输入为INT32时维度为(e, k, n / 8),输入转为INT4后维度为(e, k, n),e取值范围[1,256],k支持2048,n支持7168。
- 在该场景中,scaleOptional代表per-channel和per-group离线融合的结果,数据格式支持ND,数据类型支持INT64,shape支持三维,维度为(e, 1, n),e、n和w的e、n一致,不支持非连续的Tensor。
- 在该场景中,biasOptional代表离线计算的辅助结果,值要求为8*w*scale,并在第一维累加,数据格式支持ND,数据类型支持FLOAT32,shape支持二维,维度为(e, n),e、n和w的e、n一致,不支持非连续的Tensor。
- 在该场景中,pertokenScaleOptional数据格式支持ND,数据类型支持FLOAT32,shape支持一维,维度为(m),m和x的m一致,不支持非连续的Tensor。
- 在该场景中,groupListOptional数据格式支持ND,数据类型支持INT64,shape支持一维,维度为(e),grouplist的值总和小于等于m,不支持非连续的Tensor。
- 在该场景中,sharedInputOptional数据格式支持ND,数据类型支持BFLOAT16,shape支持二维,维度(batch/dp,n),batch/dp取值范围[1,2*1024],batch取值范围[1,16*1024],不支持非连续的Tensor。
- 在该场景中,logitOptional数据格式支持ND,数据类型支持FLOAT32,shape支持一维,维度为(m),m和x的m一致,不支持非连续的Tensor。
- 在该场景中,rowIndexOptional数据格式支持ND,数据类型支持INT64,shape支持一维,维度为(m),m和x的m一致,不支持非连续的Tensor。
- 在该场景中,dtype仅支持取0。
- 在该场景中,transposeX仅支持false。
- 在该场景中,transposeW仅支持false。
- 在该场景中,y数据格式支持ND,输出的数据类型固定为FLOAT32,shape支持二维,维度为(batch, n),不支持非连续的Tensor。
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <memory>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_permute.h"
#include "aclnnop/aclnn_grouped_matmul_finalize_routing.h"
#include "aclnnop/aclnn_trans_matmul_weight.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define CHECK_FREE_RET(cond, return_expr) \
do { \
if (!(cond)) { \
Finalize(deviceId, stream); \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t> &shape)
{
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream *stream)
{
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
aclDataType dataType, aclTensor **tensor)
{
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
template <typename T>
int CreateAclTensorWeight(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
aclDataType dataType, aclTensor **tensor)
{
auto size = static_cast<uint64_t>(GetShapeSize(shape));
const aclIntArray *mat2Size = aclCreateIntArray(shape.data(), shape.size());
auto ret = aclnnCalculateMatmulWeightSizeV2(mat2Size, dataType, &size);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCalculateMatmulWeightSizeV2 failed. ERROR: %d\n", ret);
return ret);
size *= sizeof(T);
// 调用aclrtMalloc申请device侧内存
ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
std::vector<int64_t> storageShape;
storageShape.push_back(GetShapeSize(shape));
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
storageShape.data(), storageShape.size(), *deviceAddr);
return 0;
}
int main() {
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
int64_t m = 8;
int64_t k = 2048;
int64_t n = 7168;
int64_t e = 1;
int64_t batch = 8;
int64_t bsdp = 1;
int64_t dtype = 0;
float shareInputWeight = 1.0;
int64_t shareInputOffest = 0;
bool transposeX = false;
bool transposeW = false;
int64_t groupListType = 1;
std::vector<int64_t> xShape = {m, k};
std::vector<int64_t> wShape = {e, k, n / 8};
std::vector<int64_t> scaleShape = {e, 1, n};
std::vector<int64_t> biasShape = {e, n};
std::vector<int64_t> pertokenScaleShape = {m};
std::vector<int64_t> groupListShape = {e};
std::vector<int64_t> sharedInputShape = {bsdp, n};
std::vector<int64_t> logitShape = {m};
std::vector<int64_t> rowIndexShape = {m};
std::vector<int64_t> outShape = {batch, n};
void *xDeviceAddr = nullptr;
void *wDeviceAddr = nullptr;
void *biasDeviceAddr = nullptr;
void *scaleDeviceAddr = nullptr;
void *pertokenScaleDeviceAddr = nullptr;
void *groupListDeviceAddr = nullptr;
void *sharedInputDeviceAddr = nullptr;
void *logitDeviceAddr = nullptr;
void *rowIndexDeviceAddr = nullptr;
void *outDeviceAddr = nullptr;
aclTensor* x = nullptr;
aclTensor* w = nullptr;
aclTensor* bias = nullptr;
aclTensor* groupList = nullptr;
aclTensor* scale = nullptr;
aclTensor* pertokenScale = nullptr;
aclTensor* sharedInput = nullptr;
aclTensor* logit = nullptr;
aclTensor* rowIndex = nullptr;
aclTensor* out = nullptr;
std::vector<int8_t> xHostData(GetShapeSize(xShape));
std::vector<int32_t> wHostData(GetShapeSize(wShape));
std::vector<int64_t> scaleHostData(GetShapeSize(scaleShape));
std::vector<float> biasHostData(GetShapeSize(biasShape));
std::vector<float> pertokenScaleHostData(GetShapeSize(pertokenScaleShape));
std::vector<int64_t> groupListHostData(GetShapeSize(groupListShape));
std::vector<uint16_t> sharedInputHostData(GetShapeSize(sharedInputShape));
std::vector<int64_t> logitHostData(GetShapeSize(logitShape));
std::vector<float> rowIndexHostData(GetShapeSize(rowIndexShape));
std::vector<float> outHostData(GetShapeSize(outShape)); // 实际上是float16半精度方式
// 对groupList赋值
groupListHostData[0] = 8;
// 创建x aclTensor
ret = CreateAclTensor(xHostData, xShape, &xDeviceAddr, aclDataType::ACL_INT8, &x);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建int32_t 的w aclTensor,后续转为int_4
ret = CreateAclTensorWeight(wHostData, wShape, &wDeviceAddr, aclDataType::ACL_INT32, &w);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建scale aclTensor
ret = CreateAclTensor(scaleHostData, scaleShape, &scaleDeviceAddr, aclDataType::ACL_INT64, &scale);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建bias aclTensor
ret = CreateAclTensor(biasHostData, biasShape, &biasDeviceAddr, aclDataType::ACL_FLOAT, &bias);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建pertokenScale aclTensor
ret = CreateAclTensor(pertokenScaleHostData, pertokenScaleShape, &pertokenScaleDeviceAddr, aclDataType::ACL_FLOAT, &pertokenScale);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建groupList aclTensor
ret = CreateAclTensor(groupListHostData, groupListShape, &groupListDeviceAddr, aclDataType::ACL_INT64, &groupList);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建sharedInput aclTensor
ret = CreateAclTensor(sharedInputHostData, sharedInputShape, &sharedInputDeviceAddr, aclDataType::ACL_BF16, &sharedInput);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建logit aclTensor
ret = CreateAclTensor(logitHostData, logitShape, &logitDeviceAddr, aclDataType::ACL_FLOAT, &logit);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建rowIndex aclTensor
ret = CreateAclTensor(rowIndexHostData, rowIndexShape, &rowIndexDeviceAddr, aclDataType::ACL_INT64, &rowIndex);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的Api名称
uint64_t workspaceSize = 0;
aclOpExecutor *executor;
void *workspaceAddr = nullptr;
// 调用aclnnGroupedMatmulFinalizeRouting第一段接口
workspaceSize = 0;
ret = aclnnGroupedMatmulFinalizeRoutingGetWorkspaceSize(x, w, scale, bias, pertokenScale, groupList, sharedInput, logit, rowIndex, dtype, shareInputWeight, shareInputOffest, transposeX, transposeW, groupListType, out, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnGroupedMatmulFinalizeRoutingGetWorkspaceSize failed. ERROR: %d\n", ret);
return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnGroupedMatmulFinalizeRouting第二段接口
ret = aclnnGroupedMatmulFinalizeRouting(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnGroupedMatmulFinalizeRouting failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret);
return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %u\n", i, resultData[i]);
}
// 6. 释放aclTensor和aclTensor,需要根据具体API的接口定义修改
aclDestroyTensor(x);
aclDestroyTensor(w);
aclDestroyTensor(scale);
aclDestroyTensor(bias);
aclDestroyTensor(pertokenScale);
aclDestroyTensor(groupList);
aclDestroyTensor(sharedInput);
aclDestroyTensor(logit);
aclDestroyTensor(rowIndex);
aclDestroyTensor(out);
// 7.释放device资源,需要根据具体API的接口定义修改
aclrtFree(xDeviceAddr);
aclrtFree(wDeviceAddr);
aclrtFree(scaleDeviceAddr);
aclrtFree(biasDeviceAddr);
aclrtFree(pertokenScaleDeviceAddr);
aclrtFree(groupListDeviceAddr);
aclrtFree(sharedInputDeviceAddr);
aclrtFree(logitDeviceAddr);
aclrtFree(rowIndexDeviceAddr);
aclrtFree(outDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}