aclnnQuantMatmulAllReduceV2
支持的产品型号
Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件 。
说明: 使用该接口时,请确保驱动固件包和CANN包都为配套的8.0.RC2版本或者配套的更高版本,否则将会引发报错,比如BUS ERROR等。
功能说明
算子功能:对量化后的入参x1、x2进行mm计算后,接着进行dequant和pertoken计算,接着与x3进行add操作,最后做all_reduce计算。支持pertensor、perchannel、pertoken量化方式。
计算公式:
函数原型
每个算子分为两段式接口,必须先调用“aclnnQuantMatmulAllReduceV2GetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnQuantMatmulAllReduceV2”接口执行计算。
aclnnStatus aclnnQuantMatmulAllReduceV2GetWorkspaceSize(const aclTensor *x1, const aclTensor *x2, const aclTensor *biasOptional, const aclTensor *x3Optional, const aclTensor *dequantScale, const aclTensor *pertokenScaleOptional, const char* group, const char *reduceOp, int64_t commTurn, int64_t streamMode, const aclTensor *output, uint64_t *workspaceSize, aclOpExecutor **executor)
aclnnStatus aclnnQuantMatmulAllReduceV2(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
aclnnQuantMatmulAllReduceV2GetWorkspaceSize
参数说明:
- x1(aclTensor*, 计算输入):公式中的输入x1,数据类型支持INT8,数据格式支持ND。Device侧的aclTensor,mm左矩阵,不支持非连续输入。当前版本仅支持二维或者三维输入。
- x2(aclTensor*, 计算输入):公式中的输入x2,数据类型支持INT8,Device侧的aclTensor,mm右矩阵。
Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件 :数据格式支持ND(当前版本仅支持二维输入)和FRACTAL_NZ格式(当前版本仅支持四维输入)。当x2的数据格式为FRACTAL_NZ时,配合aclnnCalculateMatmulWeightSizeV2和aclnnTransMatmulWeight完成数据格式ND到数据格式NZ的转换,非连续的tensor仅支持transpose场景。
- biasOptional(aclTensor*, 计算输入):公式中的输入biasOptional,数据类型支持INT32,数据格式支持ND。Device侧的aclTensor,对应计算公式中bias偏移。可选,可为空。当前版本仅支持一维输入。
- x3Optional(aclTensor*, 计算输入):公式中的输入x3Optional,数据类型支持FLOAT16、BFLOAT16,数据格式支持ND。Device侧的aclTensor,mm计算后的add计算,shape与output一致。
- dequantScale(aclTensor*, 计算输入):公式中的输入dequantScale,数据类型支持INT64、UINT64、FLOAT32、BFLOAT16,数据格式支持ND。mm计算后的去量化系数。shape在pertensor场景为(1),perchannel场景为(n)/(1, n)。
- 输出为BFLOAT16时,直接将BFLOAT16类型的dequantScale传入本接口。
- 输出为FLOAT16时,如果pertokenScale不为空,可直接将FLOAT32类型的dequantScale传入本接口,如果pertokenScale为空,则需提前调用TransQuantParamV2算子的aclnn接口来将dequantScale转成INT64/UINT64数据类型。
- pertokenScaleOptional(aclTensor*, 计算输入):公式中的输入pertokenScaleOptional,mm计算后的pertoken去量化系数。可选,可为空,数据类型支持FLOAT32,数据格式支持ND。x1为(b, s, k)时shape为(b*s),x1为(m, k)时shape为(m)。
- group(char*, 计算输入):通信域名称。数据类型支持String。通过Hccl提供的接口“extern HcclResult HcclGetCommName(HcclComm comm, char* commName);”获取,其中commName即为group。
- reduceOp(char*, 计算输入):reduce操作类型,数据类型支持String。目前仅支持"sum"。
- commTurn(int64_t, 计算输入):通信数据切分数,数据类型支持INT64。即总数据量/单次通信量。当前版本仅支持输入为0。
- streamMode(int64_t, 计算输入):Host侧的整型,数据类型支持INT64。AscendCL流模式的枚举,当前只支持枚举值1。
- output(aclTensor *, 输出):计算+通信的结果,数据类型支持FLOAT16、BFLOAT16。
- workspaceSize(uint64_t *, 出参):返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor **, 出参):返回op执行器,包含了算子计算流程。
返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错: 161001 (ACLNN_ERR_PARAM_NULLPTR): 1. 传入的x1、x2、dequantScale或output是空指针。 161002 (ACLNN_ERR_PARAM_INVALID): 1. x1、x2、bias、dequantScale、pertokenScaleOptional、x3或output的数据类型不在支持的范围之内。 2. streamMode不在合法范围内。 3. x1、x2、bias、dequantScale、pertokenScaleOptional、x3或output的shape不符合约束要求。
aclnnQuantMatmulAllReduceV2
参数说明:
- workspace(void*, 入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnQuantMatmulAllReduceV2GetWorkspaceSize获取。
- executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参):指定执行任务的AscendCL stream流。
返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
约束说明
- 增量场景不使能MC2,全量场景使能MC2。
- 输入x1可为二维或者三维,且不为空Tensor,其shape为(b, s, k)或者(m, k)。x2必须是二维,且不为空Tensor。其shape为(k, n),k轴满足mm算子入参要求,k轴相等。
- m大小不超过2147483647,x1与x2的最后一维大小不超过65535,x1的最后一维指k,x2的最后一维指转置时的k或非转置时的n。
- bias若非空,shape为(n)。x3若非空,shape大小与output相等。
- 当输入x1的shape为(b, s, k)时,输出output的shape为(b, s, n),当输入x1的shape为(m, k)时,输出output的shape为(m, n)。
- 传入的x1、x2、dequantScale或者output不为空指针。
- x1和x2、dequantScale、output、bias(非空场景)、x3(非空场景)的数据类型和数据格式需要在支持的范围之内。
- 若输出output类型为FLOAT16,当pertokenScale为空时,dequantScale的类型为INT64、UINT64;当pertokenScale不为空时,dequantScale的类型为FLOAT32。
- 若输出output类型为BFLOAT16,dequantScale的类型为BFLOAT16。
- x1的shape为(b, s, k)时,pertokenScaleOptional的shape为(b*s),x1的shape为(m, k)时,pertokenScaleOptional的shape为(m)。
- streamMode的数据在可选范围内,目前仅支持1。
- 只支持x2矩阵转置/不转置,x1矩阵不支持转置场景。
- 仅支持hccs链路all mesh组网。
Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件 :支持1、2、4、8卡。
- 一个模型中的通算融合MC2算子,仅支持相同通信域。
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件 :#include <iostream> #include <vector> #include <thread> #include "aclnnop/aclnn_trans_matmul_weight.h" #include "aclnnop/aclnn_quant_matmul_all_reduce_v2.h" int ndev = 8; #define ACL_CHECK(ret) \ do { \ auto retcode = ret; \ if (retcode != ACL_SUCCESS) { \ printf("[ERROR] acl interface return err %s:%d, retcode: %d \n", __FILE__, __LINE__, retcode); \ return retcode; \ } \ } while (0) #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t> &shape) { int64_t shapeSize = 1; for (auto i: shape) { shapeSize *= i; } return shapeSize; } struct Args { uint32_t rankId; HcclComm hcclComm; aclrtStream stream; aclrtContext context; std::string format; }; template<typename T> int CreateWeightNzAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr, aclDataType dataType, aclTensor **tensor, Args &args) { auto size = GetShapeSize(shape) * sizeof(T); const aclIntArray *mat2Size = aclCreateIntArray(shape.data(), shape.size()); auto ret = aclnnCalculateMatmulWeightSizeV2(mat2Size, ACL_INT8, &size); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCalculateMatmulWeightSizeV2 failed. ERROR: %d\n", ret); return ret); auto tensorSize = size * sizeof(T); // 调用aclrtMalloc申请device内存 ret = aclrtMalloc(deviceAddr, tensorSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); uint64_t transWorkspaceSize; aclOpExecutor *executor; void *transWorkspaceAddr = nullptr; ret = aclnnTransMatmulWeightGetWorkspaceSize(*tensor, &transWorkspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS && transWorkspaceSize > 0, printf("[ERROR] aclnnTransMatmulWeightGetWorkspaceSize failed. ret = %d \n", ret); return ret); ACL_CHECK(aclrtMalloc(&transWorkspaceAddr, transWorkspaceSize, ACL_MEM_MALLOC_HUGE_FIRST)); ret = aclnnTransMatmulWeight(transWorkspaceAddr, transWorkspaceSize, executor, args.stream); CHECK_RET(ret == ACL_SUCCESS, printf("[ERROR] aclnnTransMatmulWeight failed. ret = %d \n", ret);return ret); ACL_CHECK(aclrtSynchronizeStreamWithTimeout(args.stream, 20000)); return 0; } template<typename T> int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr, aclDataType dataType, aclTensor **tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } int launchOneThreadQuantMatmulAllReduce(Args &args) { int ret; ret = aclrtSetCurrentContext(args.context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret); char hcom_name[128]; ret = HcclGetCommName(args.hcclComm, hcom_name); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] HcclGetCommName failed. ret = %d \n", ret); return -1); LOG_PRINT("[INFO] rank %d hcom: %s stream: %p, context : %p\n", args.rankId, hcom_name, args.stream, args.context); std::vector<int64_t> x1Shape = {32, 64}; std::vector<int64_t> x2Shape = {64, 128}; std::vector<int64_t> biasShape = {128}; std::vector<int64_t> dequantScaleShape = {128}; std::vector<int64_t> pertokenScaleShape = {32}; std::vector<int64_t> x3Shape = {32, 128}; std::vector<int64_t> outShape = {32, 128}; void *x1DeviceAddr = nullptr; void *x2DeviceAddr = nullptr; void *biasDeviceAddr = nullptr; void *dequantScaleDeviceAddr = nullptr; void *pertokenScaleDeviceAddr = nullptr; void *x3DeviceAddr = nullptr; void *outDeviceAddr = nullptr; aclTensor *x1 = nullptr; aclTensor *x2 = nullptr; aclTensor *bias = nullptr; aclTensor *dequantScale = nullptr; aclTensor *pertokenScale = nullptr; aclTensor *x3 = nullptr; aclTensor *out = nullptr; int64_t commTurn = 0; int64_t streamMode = 1; uint64_t workspaceSize = 0; aclOpExecutor *executor; void *workspaceAddr = nullptr; long long x1ShapeSize = GetShapeSize(x1Shape); long long x2ShapeSize = GetShapeSize(x2Shape); long long biasShapeSize = GetShapeSize(biasShape); long long dequantScaleShapeSize = GetShapeSize(dequantScaleShape); long long pertokenScaleShapeSize = GetShapeSize(pertokenScaleShape); long long x3ShapeSize = GetShapeSize(x3Shape); long long outShapeSize = GetShapeSize(outShape); std::vector<int8_t> x1HostData(x1ShapeSize, 1); std::vector<int8_t> x2HostData(x2ShapeSize, 1); std::vector<int32_t> biasHostData(biasShapeSize, 1); std::vector<float> dequantScaleHostData(dequantScaleShapeSize, 1); std::vector<float> pertokenScaleHostData(pertokenScaleShapeSize, 1); std::vector<int16_t> x3HostData(x3ShapeSize, 1); std::vector<int16_t> outHostData(outShapeSize, 0); // 创建 tensor ret = CreateAclTensor(x1HostData, x1Shape, &x1DeviceAddr, aclDataType::ACL_INT8, &x1); CHECK_RET(ret == ACL_SUCCESS, return ret); if (args.format == "NZ") { ret = CreateWeightNzAclTensor(x2HostData, x2Shape, &x2DeviceAddr, aclDataType::ACL_INT8, &x2, args); } else { ret = CreateAclTensor(x2HostData, x2Shape, &x2DeviceAddr, aclDataType::ACL_INT8, &x2); } CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(biasHostData, biasShape, &biasDeviceAddr, aclDataType::ACL_INT32, &bias); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(dequantScaleHostData, dequantScaleShape, &dequantScaleDeviceAddr, aclDataType::ACL_FLOAT, &dequantScale); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(pertokenScaleHostData, pertokenScaleShape, &pertokenScaleDeviceAddr, aclDataType::ACL_FLOAT, &pertokenScale); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(x3HostData, x3Shape, &x3DeviceAddr, aclDataType::ACL_FLOAT16, &x3); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out); CHECK_RET(ret == ACL_SUCCESS, return ret); // 调用第一段接口 ret = aclnnQuantMatmulAllReduceV2GetWorkspaceSize(x1, x2, bias, x3, dequantScale, pertokenScale, hcom_name, "sum", commTurn, streamMode, out, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulAllReduceV2GetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } // 调用第二段接口 ret = aclnnQuantMatmulAllReduceV2(workspaceAddr, workspaceSize, executor, args.stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulAllReduceV2 failed. ERROR: %d\n", ret); return ret); //(固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStreamWithTimeout(args.stream, 10000); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); LOG_PRINT("device%d aclnnQuantMatmulAllReduceV2 execute success \n", args.rankId); // 释放device资源,需要根据具体API的接口定义修改 if (x1 != nullptr) { aclDestroyTensor(x1); } if (x2 != nullptr) { aclDestroyTensor(x2); } if (bias != nullptr) { aclDestroyTensor(bias); } if (dequantScale != nullptr) { aclDestroyTensor(dequantScale); } if (pertokenScale != nullptr) { aclDestroyTensor(pertokenScale); } if (x3 != nullptr) { aclDestroyTensor(x3); } if (out != nullptr) { aclDestroyTensor(out); } if (x1DeviceAddr != nullptr) { aclrtFree(x1DeviceAddr); } if (x2DeviceAddr != nullptr) { aclrtFree(x2DeviceAddr); } if (biasDeviceAddr != nullptr) { aclrtFree(biasDeviceAddr); } if (dequantScaleDeviceAddr != nullptr) { aclrtFree(dequantScaleDeviceAddr); } if (pertokenScaleDeviceAddr != nullptr) { aclrtFree(pertokenScaleDeviceAddr); } if (x3DeviceAddr != nullptr) { aclrtFree(x3DeviceAddr); } if (outDeviceAddr != nullptr) { aclrtFree(outDeviceAddr); } if (workspaceSize > 0) { aclrtFree(workspaceAddr); } aclrtDestroyStream(args.stream); HcclCommDestroy(args.hcclComm); aclrtDestroyContext(args.context); aclrtResetDevice(args.rankId); return 0; } int main(int argc, char *argv[]) { int ret; int32_t devices[ndev]; for (int i = 0; i < ndev; i++) { devices[i] = i; } HcclComm comms[128]; ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); // 初始化集合通信域 for (int i = 0; i < ndev; i++) { ret = aclrtSetDevice(devices[i]); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); } ret = HcclCommInitAll(ndev, devices, comms); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("HcclCommInitAll failed. ERROR: %d\n", ret); return ret); Args args[ndev]; aclrtStream stream[ndev]; aclrtContext context[ndev]; for (uint32_t rankId = 0; rankId < ndev; rankId++) { ret = aclrtSetDevice(rankId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateContext(&context[rankId], rankId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(&stream[rankId]); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); } // 启动多线程 std::vector<std::unique_ptr<std::thread>> threads(ndev); for (uint32_t rankId = 0; rankId < ndev; rankId++) { args[rankId].rankId = rankId; args[rankId].hcclComm = comms[rankId]; args[rankId].stream = stream[rankId]; args[rankId].context = context[rankId]; threads[rankId].reset( new(std::nothrow) std::thread(&launchOneThreadQuantMatmulAllReduce, std::ref(args[rankId]))); } for (uint32_t rankId = 0; rankId < ndev; rankId++) { threads[rankId]->join(); } aclFinalize(); return 0; }