昇腾社区首页
中文
注册

aclnnNsaSelectedAttention

支持的产品型号

  • Atlas A2 训练系列产品

函数原型

每个算子分为两段式接口,必须先调用“aclnnNsaSelectedAttentionGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnNsaSelectedAttention”接口执行计算。

  • aclnnStatus aclnnNsaSelectedAttentionGetWorkspaceSize(const aclTensor *query, const aclTensor *key, const aclTensor *value, const aclTensor *topkIndices, const aclTensor *attenMaskOptional,const aclIntArray *actualSeqQLenOptional, const aclIntArray *actualSeqKvLenOptional, double scaleValue, int64_t headNum, char *inputLayout, int64_t sparseMode, int64_t selectedBlockSize, int64_t selectedBlockCount, const aclTensor *softmaxMaxOut, const aclTensor *softmaxSumOut, const aclTensor *attentionOut, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnNsaSelectedAttention(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

aclnnNsaSelectedAttentionGetWorkspaceSize

  • 参数说明:

    • query(aclTensor *,计算输入):Device侧的aclTensor,公式中的query,数据类型支持BFLOAT16、FLOAT16,数据类型与key/value的数据类型一致,数据格式支持ND;综合约束请见约束说明
    • key(aclTensor *,计算输入):Device侧的aclTensor,公式中的key,数据类型支持BFLOAT16、FLOAT16,数据类型与query/value的数据类型一致,数据格式支持ND;综合约束请见约束说明
    • value(aclTensor *,计算输入):Device侧的aclTensor,公式中的value,数据类型支持BFLOAT16、FLOAT16,数据类型与query/key的数据类型一致,数据格式支持ND;综合约束请见约束说明
    • topkIndices(aclTensor *,计算输入):Device侧的aclTensor,公式中的topk_indices,shape需为[T_q, N_kv, selected_block_count], 表示所选数据的索引,数据类型支持INT32,数据格式支持ND,综合约束请见约束说明
    • attenMaskOptional(aclTensor *,计算输入):Device侧的aclTensor,公式中的atten_mask,数据类型支持BOOL、UINT8取值为true/1代表该位不参与计算(不生效),为false/0代表该位参与计算,数据格式支持ND,输入shape类型需为[S_q, S_kv];综合约束请见约束说明
    • actualSeqQLenOptional(aclIntArray *,计算输入):Host侧的aclIntArray,数据类型支持INT64,数据格式支持ND,长度等于batchsize。该数组表示query每个Batch S的累加和长度,假设输入真实的S长度分别为[2,2,3,2],则传入的actualSeqQLenOptional为[2,4,7,9]。在TND排布时需要输入,其余场景下输入nullptr。
    • actualSeqKvLenOptional(aclIntArray *,计算输入):Host侧的aclIntArray,数据类型支持INT64,数据格式支持ND,长度等于batchsize。该数组表示key/value每个Batch S的累加和长度,假设输入真实的S长度分别为[1024,1024,1024,1024],则传入的actualSeqKvLenOptional为[1024,2048,3072,4096]。在TND排布时需要输入,其余场景下输入nullptr。
    • scaleValue(double,计算输入):Host侧的double,公式中的scale,代表缩放系数,数据类型支持DOUBLE,一般设置为D^-0.5,其中D为输入query的head维度。
    • headNum(int64_t,计算输入):Host侧的int64_t,代表head个数,即输入query的N轴长度,数据类型支持INT64;综合约束请见约束说明
    • inputLayout(string *,计算输入):Host侧的string,数据类型支持String,代表输入querykeyvalue的数据排布格式,当前仅支持TND,其中T表示各batch S的长度累加和,N表示Head-Num,D表示Head-Dim。
    • selectedBlockSize(int64_t,计算输入):Host侧的int64_t,表示select的每个block长度。
    • selectedBlockCount(int64_t,计算输入):Host侧的int64_t,公式中的selected_block_count,表示select block的数量。
    • sparseMode(int64_t,计算输入):Host侧的int64_t,表示sparse的模式。数据类型支持INT32。目前支持sparseMode=0或者2。sparse不同模式的详细说明请参见sparse模式说明
    • softmaxMaxOut(aclTensor *,计算输出):Device侧的aclTensor,Softmax计算的Max中间结果,用于反向计算。数据类型支持FLOAT,输出的shape类型为[T_q, N_q, 8],数据格式支持ND。
    • softmaxSumOut(aclTensor *,计算输出):Device侧的aclTensor,Softmax计算的Sum中间结果,用于反向计算。数据类型支持FLOAT,输出的shape类型为[T_q, N_q, 8],数据格式支持ND。
    • attentionOut(aclTensor *,计算输出):Device侧的aclTensor,计算公式的最终输出。数据类型支持BFLOAT16、FLOAT16,输出数据类型与query保持一致, shape类型为[T_q, N_q, D_v],数据格式支持ND。
    • workspaceSize(uint64_t *,出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor **,出参):返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,若出现以下错误码,则对应原因为:
    - 返回161001(ACLNN_ERR_PARAM_NULLPTR):如果传入参数是必选输入,输出或者必选属性,且是空指针,则返回161001。
    - 返回161002(ACLNN_ERR_PARAM_INVALID):1. query、key、value、attenMaskOptional、softmaxMaxOut、softmaxSumOut、attentionOut的数据类型和数据格式不在支持的范围内。
                                            2. input_layout输入的类型不在支持的范围内。

aclnnNsaSelectedAttention

  • 参数说明:

    • workspace(void*,入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnNsaSelectedAttentionGetWorkspaceSize获取。
    • executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

约束说明

  • 该接口与PyTorch配合使用时,需要保证CANN相关包与PyTorch相关包的版本匹配。

  • 输入query、key、value的batchsize必须相等,即要求传入的actualSeqQLenOptional和actualSeqKvLenOptional具有相同的长度。

  • 输入query、key、value的D:Head-Dim必须满足(D_q == D_k && D_k >= D_v)。

  • 输入query、key、value的数据类型必须一致。

  • 输入query、key、value的input_layout必须一致。

  • sparseMode目前支持0和2。

  • selectedBlockSize目前仅支持64,与此对应的selectedBlockCount为16。

  • inputLayout目前仅支持TND。

  • 支持输入query的N和key/value的N不相等,但必须成比例关系,即N_q / N_kv必须是非0整数,称为G(group),且需满足G <= 32。

  • 当attenMaskOptional输入为nullptr时,sparseMode参数不生效,固定为全计算。

  • 关于数据shape的约束,以inputLayout的TND举例(注:T等于各batch S的长度累加和。当各batch的S相等时,T=B*S)。其中:

    • B(Batchsize):取值范围为1~32。
    • N(Head-Num):取值范围为1~128。
    • G(Group):取值范围为1~32。
    • S(Seq-Length):取值范围为1~128K。同时需要满足S_kv >= selectedBlockSize * selectedBlockCount,且S_kv长度为selectedBlockSize的整数倍。
    • D(Head-Dim):D_qk=192,D_v=128。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <cstdio>
#include <string>
#include <vector>
#include <fstream>
#include <sys/stat.h>
#include "acl/acl.h"
#include "aclnnop/aclnn_nsa_selected_attention.h"


#define CHECK_RET(cond, return_expr)                   \
    do {                                               \
        if (!(cond)) {                                 \
            return_expr;                               \
        }                                              \
    } while (0)

#define LOG_PRINT(message, ...)                        \
    do {                                               \
        printf(message, ##__VA_ARGS__);                \
    } while (0)

int64_t GetShapeSize(const std::vector<int64_t> &shape)
{
    int64_t shapeSize = 1;
    for (auto i : shape) {
        shapeSize *= i;
    }
    return shapeSize;
}

template <typename T> void CopyOutResult(int64_t outIndex, std::vector<int64_t> &shape, void **deviceAddr)
{
    auto size = GetShapeSize(shape);
    std::vector<T> resultData(size, 0);
    auto ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), *deviceAddr,
                           size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return);
    if(outIndex == 2) {
        for (int64_t i = 0; i < size; i++) {
            LOG_PRINT("attention out result is: %f\n", i, resultData[i]);
        }
    }
}

int Init(int32_t deviceId, aclrtContext *context, aclrtStream *stream)
{
    // 固定写法,AscendCL初始化
    auto ret = aclInit(nullptr);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
    ret = aclrtSetDevice(deviceId);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); aclFinalize(); return ret);
    ret = aclrtCreateContext(context, deviceId);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); aclrtResetDevice(deviceId);
                                  aclFinalize(); return ret);
    ret = aclrtSetCurrentContext(*context);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret);
                                  aclrtDestroyContext(context); aclrtResetDevice(deviceId); aclFinalize(); return ret);
    ret = aclrtCreateStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret);
                                  aclrtDestroyContext(context); aclrtResetDevice(deviceId); aclFinalize(); return ret);
    return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
                    aclDataType dataType, aclTensor **tensor)
{
    auto size = GetShapeSize(shape) * sizeof(T);
    // 调用aclrtMalloc申请device侧内存
    auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

    // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
    ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

    // 计算连续tensor的strides
    std::vector<int64_t> strides(shape.size(), 1);
    for (int64_t i = static_cast<int64_t>(shape.size()) - 2; i >= 0; i--) {
        strides[i] = shape[i + 1] * strides[i + 1];
    }

    // 调用aclCreateTensor接口创建aclTensor
    *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                              shape.data(), shape.size(), *deviceAddr);
    return 0;
}

void FreeResource(aclTensor *q, aclTensor *k, aclTensor *v, aclTensor *attentionOut, aclTensor *softmaxMax,
    aclTensor *softmaxSum, void *qDeviceAddr, void *kDeviceAddr, void *vDeviceAddr, void *attentionOutDeviceAddr,
    void *softmaxMaxDeviceAddr, void *softmaxSumDeviceAddr, uint64_t workspaceSize, void *workspaceAddr,
    int32_t deviceId, aclrtContext *context, aclrtStream *stream)
{
    // 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
    if (q != nullptr) {
        aclDestroyTensor(q);
    }
    if (k != nullptr) {
        aclDestroyTensor(k);
    }
    if (v != nullptr) {
        aclDestroyTensor(v);
    }
    if (attentionOut != nullptr) {
        aclDestroyTensor(attentionOut);
    }
    if (softmaxMax != nullptr) {
        aclDestroyTensor(softmaxMax);
    }
    if (softmaxSum != nullptr) {
        aclDestroyTensor(softmaxSum);
    }

    // 释放device资源
    if (qDeviceAddr != nullptr) {
        aclrtFree(qDeviceAddr);
    }
    if (kDeviceAddr != nullptr) {
        aclrtFree(kDeviceAddr);
    }
    if (vDeviceAddr != nullptr) {
        aclrtFree(vDeviceAddr);
    }
    if (attentionOutDeviceAddr != nullptr) {
        aclrtFree(attentionOutDeviceAddr);
    }
    if (softmaxMaxDeviceAddr != nullptr) {
        aclrtFree(softmaxMaxDeviceAddr);
    }
    if (softmaxSumDeviceAddr != nullptr) {
        aclrtFree(softmaxSumDeviceAddr);
    }
    if (workspaceSize > 0) {
        aclrtFree(workspaceAddr);
    }
    if (stream != nullptr) {
        aclrtDestroyStream(stream);
    }
    if (context != nullptr) {
        aclrtDestroyContext(context);
    }
    aclrtResetDevice(deviceId);
    aclFinalize();
}

int main()
{
    // 1. (固定写法)device/context/stream初始化,参考AscendCL对外接口列表
    // 根据自己的实际device填写deviceId
    int32_t deviceId = 0;
    aclrtContext context;
    aclrtStream stream;
    auto ret = Init(deviceId, &context, &stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

    // 2. 构造输入与输出,需要根据API的接口自定义构造
    // 如果需要修改shape值,需要同步修改../scripts/fa_generate_data.py中 test_nsa_selected_attention 分支下生成
    // query、key、value对应的shape值,并重新gen data,再执行
    int64_t batch = 2;
    int64_t s1 = 512;
    int64_t s2 = 2048;
    int64_t d1 = 192;
    int64_t d2 = 128;
    int64_t g = 4;
    int64_t n2 = 4;
    std::vector<int64_t> qShape = {batch * s1, n2 * g, d1};
    std::vector<int64_t> kShape = {batch * s2, n2, d1};
    std::vector<int64_t> vShape = {batch * s2, n2, d2};
    std::vector<int64_t> topKIndicesShape = {batch * s1, n2, 16};
    std::vector<int64_t> attentionOutShape = {batch * s1, n2 * g, d2};
    std::vector<int64_t> softmaxMaxShape = {batch * s1, n2 * g, 8};
    std::vector<int64_t> softmaxSumShape = {batch * s1, n2 * g, 8};
    
    double scaleValue = 1.0;
    int64_t headNum = 16;
    int64_t selectedBlockSize = 64;
    int64_t selectedBlockCount = 16;
    int64_t sparseMod = 2;
    char layOut[] = "TND";

    void *qDeviceAddr = nullptr;
    void *kDeviceAddr = nullptr;
    void *vDeviceAddr = nullptr;
    void *topKIndicesDeviceAddr = nullptr;
    void *attentionOutDeviceAddr = nullptr;
    void *softmaxMaxDeviceAddr = nullptr;
    void *softmaxSumDeviceAddr = nullptr;

    aclTensor *q = nullptr;
    aclTensor *k = nullptr;
    aclTensor *v = nullptr;
    aclTensor *topKIndices = nullptr;
    aclTensor *attenMaskOptional = nullptr;
    aclTensor *softmaxMax = nullptr;
    aclTensor *softmaxSum = nullptr;
    aclTensor *attentionOut = nullptr;

    std::vector<int64_t> actualSeqQLenVec = {512, 1024};
    std::vector<int64_t> actualSeqKvLenVec = {2048, 4096};
    aclIntArray *actualSeqQLenOptional = aclCreateIntArray(actualSeqQLenVec.data(), actualSeqQLenVec.size());
    aclIntArray *actualSeqKvLenOptional = aclCreateIntArray(actualSeqKvLenVec.data(), actualSeqKvLenVec.size());

    std::vector<aclFloat16> qHostData(GetShapeSize(qShape), 1);
    std::vector<aclFloat16> kHostData(GetShapeSize(kShape), 1);
    std::vector<aclFloat16> vHostData(GetShapeSize(vShape), 1);
    std::vector<int32_t> topkIndicesHostData(GetShapeSize(topKIndicesShape), 2);
    std::vector<float> attentionOutHostData(GetShapeSize(attentionOutShape), 0.0);
    std::vector<float> softmaxMaxHostData(GetShapeSize(softmaxMaxShape), 0.0);
    std::vector<float> softmaxSumHostData(GetShapeSize(softmaxSumShape), 0.0);
    uint64_t workspaceSize = 0;
    void *workspaceAddr = nullptr;

    // 创建acl Tensor
    ret = CreateAclTensor(qHostData, qShape, &qDeviceAddr, aclDataType::ACL_FLOAT16, &q);
    CHECK_RET(ret == ACL_SUCCESS,
              FreeResource(q, k, v, attentionOut, softmaxMax, softmaxSum, qDeviceAddr, kDeviceAddr, vDeviceAddr,
                  attentionOutDeviceAddr, softmaxMaxDeviceAddr, softmaxSumDeviceAddr, workspaceSize, workspaceAddr,
                  deviceId, &context, &stream);
              return ret);
    ret = CreateAclTensor(kHostData, kShape, &kDeviceAddr, aclDataType::ACL_FLOAT16, &k);
    CHECK_RET(ret == ACL_SUCCESS,
              FreeResource(q, k, v, attentionOut, softmaxMax, softmaxSum, qDeviceAddr, kDeviceAddr, vDeviceAddr,
                  attentionOutDeviceAddr, softmaxMaxDeviceAddr, softmaxSumDeviceAddr, workspaceSize, workspaceAddr,
                  deviceId, &context, &stream);
              return ret);
    ret = CreateAclTensor(vHostData, vShape, &vDeviceAddr, aclDataType::ACL_FLOAT16, &v);
    CHECK_RET(ret == ACL_SUCCESS,
              FreeResource(q, k, v, attentionOut, softmaxMax, softmaxSum, qDeviceAddr, kDeviceAddr, vDeviceAddr,
                  attentionOutDeviceAddr, softmaxMaxDeviceAddr, softmaxSumDeviceAddr, workspaceSize, workspaceAddr,
                  deviceId, &context, &stream);
              return ret);
    ret = CreateAclTensor(topkIndicesHostData, topKIndicesShape, &topKIndicesDeviceAddr, aclDataType::ACL_INT32, &topKIndices);
    CHECK_RET(ret == ACL_SUCCESS,
              FreeResource(q, k, v, attentionOut, softmaxMax, softmaxSum, qDeviceAddr, kDeviceAddr, vDeviceAddr,
                  attentionOutDeviceAddr, softmaxMaxDeviceAddr, softmaxSumDeviceAddr, workspaceSize, workspaceAddr,
                  deviceId, &context, &stream);
              return ret);
    ret = CreateAclTensor(attentionOutHostData, attentionOutShape, &attentionOutDeviceAddr, aclDataType::ACL_FLOAT16,
                          &attentionOut);
    CHECK_RET(ret == ACL_SUCCESS,
              FreeResource(q, k, v, attentionOut, softmaxMax, softmaxSum, qDeviceAddr, kDeviceAddr, vDeviceAddr,
                  attentionOutDeviceAddr, softmaxMaxDeviceAddr, softmaxSumDeviceAddr, workspaceSize, workspaceAddr,
                  deviceId, &context, &stream);
              return ret);
    ret = CreateAclTensor(softmaxMaxHostData, softmaxMaxShape, &softmaxMaxDeviceAddr, aclDataType::ACL_FLOAT,
                          &softmaxMax);
    CHECK_RET(ret == ACL_SUCCESS,
              FreeResource(q, k, v, attentionOut, softmaxMax, softmaxSum, qDeviceAddr, kDeviceAddr, vDeviceAddr,
                  attentionOutDeviceAddr, softmaxMaxDeviceAddr, softmaxSumDeviceAddr, workspaceSize, workspaceAddr,
                  deviceId, &context, &stream);
              return ret);

    ret = CreateAclTensor(softmaxSumHostData, softmaxSumShape, &softmaxSumDeviceAddr, aclDataType::ACL_FLOAT,
                          &softmaxSum);
    CHECK_RET(ret == ACL_SUCCESS,
              FreeResource(q, k, v, attentionOut, softmaxMax, softmaxSum, qDeviceAddr, kDeviceAddr, vDeviceAddr,
                  attentionOutDeviceAddr, softmaxMaxDeviceAddr, softmaxSumDeviceAddr, workspaceSize, workspaceAddr,
                  deviceId, &context, &stream);
              return ret);

    // 3. 调用CANN算子库API,需要修改为具体的API名称
    aclOpExecutor *executor;

    // 调用aclnnNsaSelectedAttention第一段接口
    ret = aclnnNsaSelectedAttentionGetWorkspaceSize(
        q, k, v, topKIndices, attenMaskOptional, actualSeqQLenOptional, actualSeqKvLenOptional, scaleValue, headNum,
        layOut, sparseMod, selectedBlockSize, selectedBlockCount, softmaxMax, softmaxSum, attentionOut, &workspaceSize, &executor);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnNsaSelectedAttentionGetWorkspaceSize failed. ERROR: %d\n", ret);
              FreeResource(q, k, v, attentionOut, softmaxMax, softmaxSum, qDeviceAddr, kDeviceAddr, vDeviceAddr,
                  attentionOutDeviceAddr, softmaxMaxDeviceAddr, softmaxSumDeviceAddr, workspaceSize, workspaceAddr,
                  deviceId, &context, &stream);
              return ret);

    // 根据第一段接口计算出的workspaceSize申请device内存
    if (workspaceSize > 0) {
        ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret);
            FreeResource(q, k, v, attentionOut, softmaxMax, softmaxSum, qDeviceAddr, kDeviceAddr, vDeviceAddr,
                attentionOutDeviceAddr, softmaxMaxDeviceAddr, softmaxSumDeviceAddr, workspaceSize, workspaceAddr,
                deviceId, &context, &stream);
            return ret);
    }

    // 调用aclnnNsaSelectedAttention第二段接口
    ret = aclnnNsaSelectedAttention(workspaceAddr, workspaceSize, executor, stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnNsaSelectedAttention failed. ERROR: %d\n", ret);
              FreeResource(q, k, v, attentionOut, softmaxMax, softmaxSum, qDeviceAddr, kDeviceAddr, vDeviceAddr,
                  attentionOutDeviceAddr, softmaxMaxDeviceAddr, softmaxSumDeviceAddr, workspaceSize, workspaceAddr,
                  deviceId, &context, &stream);
              return ret);

    // 4. (固定写法)同步等待任务执行结束
    ret = aclrtSynchronizeStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret);
              FreeResource(q, k, v, attentionOut, softmaxMax, softmaxSum, qDeviceAddr, kDeviceAddr, vDeviceAddr,
                  attentionOutDeviceAddr, softmaxMaxDeviceAddr, softmaxSumDeviceAddr, workspaceSize, workspaceAddr,
                  deviceId, &context, &stream);
              return ret);

    // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
    CopyOutResult<float>(0, softmaxMaxShape, &softmaxMaxDeviceAddr);
    CopyOutResult<float>(1, softmaxSumShape, &softmaxSumDeviceAddr);
    CopyOutResult<aclFloat16>(2, attentionOutShape, &attentionOutDeviceAddr);

    // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改; 释放device资源
    FreeResource(q, k, v, attentionOut, softmaxMax, softmaxSum, qDeviceAddr, kDeviceAddr, vDeviceAddr,
        attentionOutDeviceAddr, softmaxMaxDeviceAddr, softmaxSumDeviceAddr, workspaceSize, workspaceAddr,
        deviceId, &context, &stream);

    return 0;
}