昇腾社区首页
中文
注册

aclnnNsaCompressWithCache

支持的产品型号

  • Atlas A2 训练系列产品
  • Atlas A3 训练系列产品/Atlas A3 推理系列产品

函数原型

每个算子分为两段式接口,必须先调用 “aclnnNsaCompressWithCacheGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnNsaCompressWithCache”接口执行计算。

  • aclnnStatus aclnnNsaCompressWithCacheGetWorkspaceSize(const aclTensor *input, const aclTensor *weight, const aclTensor *slotMapping, const aclIntArray *actSeqLenOptional,const aclTensor *blockTableOptional, char *layoutOptional, int64_t compressBlockSize, int64_t compressStride, int64_t actSeqLenType, int64_t pageBlockSize, aclTensor *outputCache, uint64_t *workspaceSize, aclOpExecutor **executor);
  • aclnnStatus aclnnNsaCompressWithCache(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能说明

  • 算子功能:用于Native-Sparse-Attention推理阶段的KV压缩,每次推理每个batch会产生一个新的token,每当某个batch的token数量凑满一个compress_block时,该算子会将该batch的后compress_block个token压缩成一个compress_token,算法流程如下:
  1. 检查act_seq_lens是否有满足满足scompressBlockSizes \ge compressBlockSize(scompressBlockSize)%stride==0(s - compressBlockSize) \% stride ==0的序列长度;
  2. 找到满足序列长度的batchIdx,根据block_table找到该batch的后compress_block_size个token压缩;
  3. 执行压缩算法;
  4. 根据slot_mapping写回到output_cache中。
  • 计算公式
compressIdx=(scompressBlockSize)/strideouputCacheRef[slotMapping[i]]=input[compressIdxstride:compressIdxstride+compressBlockSize]weight[:]compressIdx=(s-compressBlockSize)/stride\\ ouputCacheRef[slotMapping[i]] = input[compressIdx*stride : compressIdx*stride+compressBlockSize]*weight[:]

aclnnNsaCompressWithCacheGetWorkspaceSize

  • 参数说明

    • input(aclTensor *,计算输入):Device侧的aclTensor, 表示待压缩张量。当传入blockTable时shape为[blockNum, pageBlockSize, N, D],数据类型支持BFLOAT16、FLOAT16,数据格式支持ND,支持非连续的Tensor,不支持空Tensor。N(Head-Num)表示多头数、D(Head-Dim)表示隐藏层最小的单元尺寸。
    • weight(aclTensor *,计算输入):Device侧的aclTensor,压缩的权重。shape支持[compressBlockSize, N],weight与input的shape满足broadcast关系,数据类型与inpu保持一致,数据格式支持ND,支持非连续的Tensor,不支持空Tensor。N(Head-Num)表示多头数。
    • slotMapping (aclTensor *,计算输入):Device侧的aclTensor,数据格式支持ND,shape为[B,],存储每个batch尾部压缩数据存储的位置的索引,数据类型支持INT32,不支持非连续的Tensor,不支持空Tensor。B(Batch)表示输入样本批量大小。
    • actSeqLenOptional(aclTensor *,计算输入):可选参数,Host侧的aclIntArray,数据类型支持INT64,数据格式支持ND,描述了每个Batch对应的S大小。在TND排布场景下需要该输入,其余场景输入nullptr。S(Seq-Length)表示输入样本序列长度。
    • blockTableOptional (aclTensor *,计算输入):可选参数,Device侧的aclTensor,数据类型支持INT32。数据格式支持ND。表示PageAttention中KV存储使用的block映射表,如不使用该功能可传入nullptr。
    • layoutOptional (char *,计算输入):可选参数,Host侧的string,数据类型支持String,代表输入input的数据排布格式,支持BSH、SBH、BSND、BNSD、TND。当前仅支持TND,当传入blockTableOptional时此参数无效,否则为必选参数。
      • 说明:数据排布格式支持从多种维度解读,其中T是B和S合轴紧密排列的数据(每个batch的actSeqLen)、B(Batch)表示输入样本批量大小、S(Seq-Length)表示输入样本序列长度、H(Head-Size)表示隐藏层的大小、N(Head-Num)表示多头数、D(Head-Dim)表示隐藏层最小的单元尺寸,且满足D=H/N。
    • compressBlockSize(int64_t,计算输入):Host侧的int64_t,压缩滑窗大小。
    • compressStride(int64_t,计算输入):Host侧的int64_t,两次压缩滑窗间隔大小。
    • actSeqLenType(int64_t,计算输入):Host侧的int64_t,actSeqLenOptional有输入时生效,可取值0或1,0代表actSeqLenOptional中数值为前继batch的系列大小的cumsum结果(累积和),1代表actSeqLenOptional中数值为每个batch中序列大小,当前仅支持1。
    • pageBlockSize(int64_t,计算输入):Host侧的int64_t,指定page attention场景下page的blocksize大小。
    • outputCache(aclTensor *,计算输入输出):Device侧的aclTensor,数据格式支持ND,数据类型与input保持一致,不支持非连续的Tensor,不支持空Tensor。
    • workspaceSize(uint64_t *,出参):返回用户需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor **,出参):返回op执行器,包含了算子计算流程。
  • 返回值

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    161001(ACLNN_ERR_PARAM_NULLPTR):1. 计算输入和必选计算输出是空指针
    161002(ACLNN_ERR_PARAM_INVALID):1. 计算输入和输出的数据类型和格式不在支持的范围内
    561002(ACLNN_ERR_INNER_TILING_ERROR): 1. input和weight不满足broadcast关系,即input的第三维大小与weight的第二维大小不相等
                                          2. activeNum、expertNum、expertCapacity的值小于0
                                          3. compress_block_size、compress_stride 、不是16的整数倍,或者compress_block_size<compress_stride
                                          4. seq_lens_type!=1或者layout取值不是BSH、SBH、BSND、BNSD、TND中的一个
                                          5. page_block_size取值不是64或者128
                                          6. headDim未对齐16

aclnnNsaCompressWithCache

  • 参数说明:

    • workspace(void*,入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnNsaCompressWithCacheGetWorkspaceSize获取。
    • executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

约束说明

  • input和weight满足broadcast关系,input的第三维大小与weight的第二维大小相等
  • compressBlockSize、compressStride 必须是16的整数倍,且compressBlockSize>=compressStride,compressBlockSize <= 64,
  • actSeqLenType目前仅支持取值1
  • layoutOptional取值可以是BSH、SBH、BSND、BNSD、TND,但是不会生效
  • pageBlockSize 只能是64或者128
  • headDim是16的整数倍,且headDim <= 256
  • 不支持input/weight/outputCache为空输入
  • slotMapping的值无重复,否则会导致计算结果不稳定
  • blockTableOptional的值不超过blockNum,否则会发生越界
  • actSeqLenOptional的值不应该超过序列最大长度
  • headNum <= 64,且headNum>50时headNum%2=0,

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include "acl/acl.h"
#include "aclnnop/aclnn_nsa_compress_with_cache.h"
#include <iostream>
#include <vector>
#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)
#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
    int64_t shape_size = 1;
    for (auto i : shape) {
        shape_size *= i;
    }
    return shape_size;
}
int Init(int32_t deviceId, aclrtStream* stream) {
    // 固定写法,AscendCL初始化
    auto ret = aclInit(nullptr);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
    ret = aclrtSetDevice(deviceId);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
    ret = aclrtCreateStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
    return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
    auto size = GetShapeSize(shape) * sizeof(T);
    // 调用aclrtMalloc申请device侧内存
    auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
    // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
    ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
    // 计算连续tensor的strides
    std::vector<int64_t> strides(shape.size(), 1);
    for (int64_t i = shape.size() - 2; i >= 0; i--) {
        strides[i] = shape[i + 1] * strides[i + 1];
    }
    // 调用aclCreateTensor接口创建aclTensor
    *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                              shape.data(), shape.size(), *deviceAddr);
    return 0;
}
int main() {
    // 输入shape相关参数设置
    constexpr int64_t compress_block_size = 32;
    constexpr int64_t compress_stride = 16;
    constexpr int64_t heads_num = 24;
    constexpr int64_t heads_dim = 192;
    constexpr int64_t batch_size = 4;
    constexpr int64_t page_block_size = 128;
    constexpr int64_t max_seq_len = 512;
    constexpr int64_t result_len = 512;
    constexpr int64_t block_num_per_batch = max_seq_len / page_block_size;
    constexpr int64_t blocks_num = block_num_per_batch * batch_size;
    // 1. 固定写法,device/stream初始化, 参考acl对外接口列表
    // 根据自己的实际device填写deviceId
    int32_t deviceId = 0;
    aclrtStream stream;
    auto ret = Init(deviceId, &stream);
    // check根据自己的需要处理
    CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
    // 2. 构造输入与输出,需要根据API的接口定义构造
    std::vector<int64_t> inputShape = {blocks_num, page_block_size, heads_num, heads_dim};
    std::vector<int64_t> weightShape = {compress_block_size, heads_num};
    std::vector<int64_t> slotMappingShape = {batch_size};
    std::vector<int64_t> outputCacheRefShape = {result_len, heads_num, heads_dim};
    std::vector<int64_t> actSeqLenShape = {batch_size};
    std::vector<int64_t> blockTableShape = {batch_size, block_num_per_batch};

    void *inputDeviceAddr = nullptr;
    void *weightDeviceAddr = nullptr;
    void *slotMappingDeviceAddr = nullptr;
    void *outputCacheRefDeviceAddr = nullptr;
    void *actSeqLenDeviceAddr = nullptr;
    void *blockTableDeviceAddr = nullptr;

    aclTensor *input = nullptr;
    aclTensor *weight = nullptr;
    aclTensor *slotMapping = nullptr;
    aclTensor *outputCacheRef = nullptr;
    aclIntArray *actSeqLen = nullptr;
    aclTensor *blockTable = nullptr;

    std::vector<aclFloat16> inputHostData(inputShape[0] * inputShape[1] * inputShape[2] * inputShape[3],
                                          aclFloatToFloat16(1.0));
    std::vector<aclFloat16> weightHostData(weightShape[0] * weightShape[1], aclFloatToFloat16(1.0));
    std::vector<int32_t> slotMappingHostData(slotMappingShape[0], 0);
    std::vector<aclFloat16> outputCacheRefHostData(outputCacheRefShape[0] * outputCacheRefShape[1] *
                                                   outputCacheRefShape[2], aclFloatToFloat16(1.0));
    std::vector<int64_t> actSeqLenHostData(actSeqLenShape[0], 0);
    std::vector<int32_t> blockTableHostData(blockTableShape[0] * blockTableShape[1]);
    actSeqLenHostData[0]=32;
    // 创建self aclTensor
    ret = CreateAclTensor(inputHostData, inputShape, &inputDeviceAddr, aclDataType::ACL_FLOAT16, &input);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(weightHostData, weightShape, &weightDeviceAddr, aclDataType::ACL_FLOAT16, &weight);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(slotMappingHostData, slotMappingShape, &slotMappingDeviceAddr, aclDataType::ACL_INT32,
                          &slotMapping);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(outputCacheRefHostData, outputCacheRefShape, &outputCacheRefDeviceAddr,
                          aclDataType::ACL_FLOAT16, &outputCacheRef);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    actSeqLen = aclCreateIntArray(actSeqLenHostData.data(), actSeqLenHostData.size());
    ret = CreateAclTensor(blockTableHostData, blockTableShape, &blockTableDeviceAddr, aclDataType::ACL_INT32,
                          &blockTable);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    char layout[4] = "TND";
    int64_t actSeqLenType = 1;
    // 3. 调用CANN算子库API,需要修改为具体的API
    uint64_t workspaceSize = 0;
    aclOpExecutor* executor;
    // 调用aclnnNsaCompressWithCache第一段接口
    ret = aclnnNsaCompressWithCacheGetWorkspaceSize(input, weight, slotMapping, actSeqLen, blockTable, layout,
                                                    compress_block_size, compress_stride, actSeqLenType,
                                                    page_block_size, outputCacheRef, &workspaceSize, &executor);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnNsaCompressWithCacheGetWorkspaceSize failed. ERROR: %d\n", ret);
              return ret);
    // 根据第一段接口计算出的workspaceSize申请device内存
    void* workspaceAddr = nullptr;
    if (workspaceSize > 0) {
        ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
    }
    // 调用aclnnNsaCompressWithCache第二段接口
    ret = aclnnNsaCompressWithCache(workspaceAddr, workspaceSize, executor, stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnNsaCompressWithCache failed. ERROR: %d\n", ret); return ret);
    // 4. 固定写法,同步等待任务执行结束
    ret = aclrtSynchronizeStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
    // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
    auto size = GetShapeSize(outputCacheRefShape);
    std::vector<aclFloat16> resultData(size, 0);
    ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(aclFloat16), outputCacheRefDeviceAddr,
                      size * sizeof(aclFloat16), ACL_MEMCPY_DEVICE_TO_HOST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
    for (int64_t i = heads_dim * heads_num - 16; i < heads_dim * heads_num + 16; i++) {
        printf("outputCache[%d]:%f\n", i, aclFloat16ToFloat(resultData[i]));
    }
    // 6. 释放aclTensor,需要根据具体API的接口定义修改
    aclDestroyTensor(input);
    aclDestroyTensor(weight);
    aclDestroyTensor(slotMapping);
    aclDestroyTensor(outputCacheRef);
    aclDestroyIntArray(actSeqLen);
    aclDestroyTensor(blockTable);

    // 7. 释放device资源,需要根据具体API的接口定义修改
    aclrtFree(inputDeviceAddr);
    aclrtFree(weightDeviceAddr);
    aclrtFree(slotMappingDeviceAddr);
    aclrtFree(outputCacheRefDeviceAddr);
    aclrtFree(blockTableDeviceAddr);
    if (workspaceSize > 0) {
        aclrtFree(workspaceAddr);
    }
    aclrtDestroyStream(stream);
    aclrtResetDevice(deviceId);
    aclFinalize();
    return 0;
}