aclnnNsaCompress
支持的产品型号
Atlas A2 训练系列产品
函数原型
每个算子分为两段式接口,必须先调用“aclnnNsaCompressGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnNsaCompress”接口执行计算。
aclnnStatus aclnnNsaCompressGetWorkspaceSize(const aclTensor *input, const aclTensor *weight, const aclIntArray *actSeqLenOptional, char *layoutOptional, int64_t compressBlockSize, int64_t compressStride, int64_t actSeqLenType, aclTensor *output, uint64_t *workspaceSize aclOpExecutor **executor)
aclnnStatus aclnnNsaCompress(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能说明
算子功能:训练场景下,使用NSA Compress算法减轻long-context的注意力计算,实现在KV序列维度进行压缩。
计算公式:
Nsa Compress正向计算公式如下:
aclnnNsaCompressGetWorkspaceSize
参数说明:
input(aclTensor *,计算输入):Device侧的aclTensor,表示待压缩张量。shape支持[T, N, D], 数据类型支持FLOAT16、BFLOAT16,数据类型与weight数据类型一致,数据格式支持ND;支持非连续的Tensor, 不支持空Tensor。综合约束请见约束说明。
说明: input数据排布格式支持从多种维度解读,其中B(Batch)表示输入样本批量大小、S(Seq-Length)表示输入样本序列长度、H(Head-Size)表示隐藏层的大小、N(Head-Num)表示多头数、D(Head-Dim)表示隐藏层最小的单元尺寸,且满足D=H/N; 其中T是B和S合轴紧密排列的数据(每个batch的actSeqLen)、B(Batch)表示输入样本批量大小、S(Seq-Length)表示输入样本序列长度、H(Head-Size)表示隐藏层的大小、N(Head-Num)表示多头数、D(Head-Dim)表示隐藏层最小的单元尺寸,且满足D=H/N。
weight(aclTensor *,计算输入):Device侧的aclTensor,表示压缩权重。shape支持[compressBlockSize, N],weight与input的shape满足broadcast关系, 数据类型与input数据类型保持一致,数据格式支持ND, 支持非连续的Tensor, 不支持空Tensor。综合约束请见约束说明。
actSeqLenOptional(aclIntArray *,计算输入):Host侧的aclIntArray,可选参数,数据类型支持INT64,数据格式支持ND, 描述了每个Batch对应的S大小,当前不能为空;综合约束请见约束说明。
layoutOptional(char *,计算输入):Host侧的string,可选参数,代表输入input的数据排布格式,支持BSH、SBH、BSND、BNSD、TND。当前仅支持TND。
compressBlockSize(int64_t,计算输入):Host侧的int64_t,压缩滑窗大小。
compressStride(int64_t,计算输入):Host侧的int64_t,两次压缩滑窗间隔大小。
actSeqLenType(int64_t,计算输入):Host侧的int64_t,可取值0或1,0代表actSeqLenOptional中数值为前继batch的系列大小的cumsum结果(累积和),1代表actSeqLenOptional中数值为每个batch中序列大小,当前仅支持0。
output(aclTensor*,计算输出):Device侧的aclTensor,压缩后的结果。shape支持[T, N, D],数据类型与inpu保持一致,数据格式支持ND。支持非连续的Tensor,不支持空Tensor。
workspaceSize(uint64_t*,出参):返回需要在Device侧申请的workspace大小。
executor(aclOpExecutor**,出参):返回op执行器,包含了算子计算流程。
返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,若出现以下错误码,则对应原因为: - 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入input、weight、actSeqLenOptional或output是空指针 - 返回161002(ACLNN_ERR_PARAM_INVALID):1. input和weight的数据类型不在支持的范围之内 2. input和weight的shape无法做broadcast 3. layoutOptional不合法
aclnnNsaCompress
参数说明:
- workspace(void*,入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnNsaCompressGetWorkspaceSize获取。
- executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
- stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
约束说明
- 该接口与PyTorch配合使用时,需要保证CANN相关包与PyTorch相关包的版本匹配。
- input和weight需要满足broadcast关系,input.shape[1]=weight.shape[1],不支持input、weight为空输入。
- compressBlockSize和compressStride必须是16的整数倍,并且compressBlockSize>=compressStride。
- actSeqLenType目前仅支持取值0,即actSeqLenOptional需要是前缀和模式。
- actSeqLenOptional目前不支持为空。
- layoutOptional目前仅支持TND。
- headDim需要对齐16。
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_nsa_compress.h"
#define CHECK_RET(cond, return_expr) \
do \
{ \
if (!(cond)) \
{ \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do \
{ \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t> &shape)
{
int64_t shapeSize = 1;
for (auto i : shape)
{
shapeSize *= i;
}
return shapeSize;
}
void PrintOutResult(std::vector<int64_t> &shape, void **deviceAddr)
{
auto size = GetShapeSize(shape);
std::vector<aclFloat16> resultData(size, 0);
auto ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), *deviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return);
for (int64_t i = 0; i < size; i++)
{
LOG_PRINT("mean result[%ld] is: %f\n", i, aclFloat16ToFloat(resultData[i]));
}
}
int Init(int32_t deviceId, aclrtContext *context, aclrtStream *stream)
{
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateContext(context, deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetCurrentContext(*context);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
aclDataType dataType, aclTensor **tensor)
{
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, nullptr, 0, aclFormat::ACL_FORMAT_ND, shape.data(),
shape.size(), *deviceAddr);
return ACL_SUCCESS;
}
int main()
{
// 1. (固定写法)device/context/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtContext context;
aclrtStream stream;
auto ret = Init(deviceId, &context, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
void *inputDeviceAddr = nullptr;
void *weightDeviceAddr = nullptr;
void *outputDeviceAddr = nullptr;
aclTensor *input = nullptr;
aclTensor *weight = nullptr;
aclIntArray *actSeqLenOptional = nullptr;
aclTensor *output = nullptr;
// 自定义输入与属性
int64_t compressBlockSize = 32;
int64_t compressStride = 32;
int64_t actSeqLenType = 0; // 0是前缀和模式,1是count计数模式
char *layout = "TND";
int32_t batchSize = 1;
int32_t sampleLen = 64;
int32_t headNum = 4;
int32_t headDim = 32;
std::vector<int64_t> inputShape = {batchSize * sampleLen, headNum, headDim};
std::vector<int64_t> weightShape = {compressBlockSize, headNum};
std::vector<int64_t> actSeqShape = {batchSize};
std::vector<aclFloat16> inputHostData(batchSize * sampleLen * headNum * headDim);
std::vector<aclFloat16> weightHostData(compressBlockSize * headNum);
std::vector<int64_t> actSeqHostData(batchSize);
for (int i = 0; i < inputHostData.size(); i++)
{
inputHostData[i] = aclFloatToFloat16(1.0);
}
for (int i = 0; i < weightHostData.size(); i++)
{
weightHostData[i] = aclFloatToFloat16(1.0);
}
int outputNum = 0;
int preActSeqLen = 0;
for (int i = 0; i < batchSize; i++)
{
if (actSeqLenType == 0)
{
actSeqHostData[i] = sampleLen + preActSeqLen;
preActSeqLen = actSeqHostData[i];
}
else if (actSeqLenType == 1)
{
actSeqHostData[i] = sampleLen;
}
if (sampleLen >= compressBlockSize)
{
outputNum += (sampleLen - compressBlockSize) / compressStride + 1;
}
}
std::vector<int64_t> outputShape = {outputNum, headNum, headDim};
std::vector<aclFloat16> outputHostData(outputNum * headNum * headDim);
ret = CreateAclTensor(inputHostData, inputShape, &inputDeviceAddr, aclDataType::ACL_FLOAT16, &input);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(weightHostData, weightShape, &weightDeviceAddr, aclDataType::ACL_FLOAT16, &weight);
CHECK_RET(ret == ACL_SUCCESS, return ret);
actSeqLenOptional = aclCreateIntArray(actSeqHostData.data(), actSeqHostData.size());
ret = CreateAclTensor(outputHostData, outputShape, &outputDeviceAddr, aclDataType::ACL_FLOAT16, &output);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的API名称
uint64_t workspaceSize = 0;
aclOpExecutor *executor;
// 调用aclnnNsaCompressGetWorkspaceSize第一段接口
ret = aclnnNsaCompressGetWorkspaceSize(input, weight, actSeqLenOptional, layout, compressBlockSize, compressStride,
actSeqLenType, output, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnNsaCompressGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void *workspaceAddr = nullptr;
if (workspaceSize > 0)
{
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnNsaCompress第二段接口
ret = aclnnNsaCompress(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnNsaCompress failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
PrintOutResult(outputShape, &outputDeviceAddr);
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(input);
aclDestroyTensor(weight);
aclDestroyIntArray(actSeqLenOptional);
aclDestroyTensor(output);
// 7. 释放device资源
aclrtFree(inputDeviceAddr);
aclrtFree(weightDeviceAddr);
// aclrtFree(actSeqDeviceAddr);
aclrtFree(outputDeviceAddr);
if (workspaceSize > 0)
{
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtDestroyContext(context);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}