aclnnMoeTokenUnpermuteWithRoutingMapGrad
支持的产品型号
Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件 。Atlas A3 训练系列产品/Atlas A3 推理系列产品 。
功能说明
算子功能:aclnnMoeTokenUnpermuteWithRoutingMap的反向传播。
计算公式:
(1) probs非None:
- paddedMode为false时
- paddedMode为true时
(2) probs为None:
- hidden_size指unpermutedTokensGrad的第1维大小。
- paddedMode等于true时,每个专家固定能够处理capacity个token。输入routingMapOptional的第1维是experts_num,即专家个数,输入outIndex的第0维是experts_num * capacity,根据这两个维度可以算出capacity。
- paddedMode等于false时,每个token固定被topK_num个专家处理。输入unpermutedTokensGrad的第0维是tokens_num,即token的个数,输入outIndex的第0维是tokens_num * capacity,根据这两个维度可以算出topK_num。
函数原型
每个算子分为两段式接口,必须先调用“aclnnMoeTokenUnpermuteWithRoutingMapGradGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnMoeTokenUnpermuteWithRoutingMapGrad”接口执行计算。
aclnnStatus aclnnMoeTokenUnpermuteWithRoutingMapGradGetWorkspaceSize(const aclTensor* unpermutedTokensGrad, const aclTensor* outIndices, const aclTensor* permuteTokensId, const aclTensor* routingMapOptional, const aclTensor* permutedTokensOptional, const aclTensor* probsOptional, bool paddedMode, const aclIntArray* restoreShape, aclTensor* permutedTokensGradOut, const aclTensor* probsGradOut, uint64_t* workspaceSize, aclOpExecutor** executor)
aclnnStatus aclnnMoeTokenUnpermuteWithRoutingMapGrad(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)
aclnnMoeTokenUnpermuteWithRoutingMapGradGetWorkspaceSize
参数说明:
- unpermutedTokensGrad(aclTensor*,计算输入):Device侧的aclTensor。计算公式中的unpermutedTokensGrad,代表正向输出unpermutedTokens的梯度,要求为一个维度为2D的Tensor,shape为(tokens_num,hidden_size),数据类型支持BFLOAT16、FLOAT16、FLOAT32,数据格式要求为ND。支持非连续的Tensor。
- outIndex(aclTensor*,计算输入):Device侧的aclTensor。计算公式中outIndex,代表输出位置索引。当paddedMode为false时,要求shape为一个1D的(tokens_num * topK_num,),索引取值范围[0,tokens_num * topK_num - 1]。当paddedMode为true时,要求shape为一个1D的(experts_num* capacity,)。索引取值范围[0,experts_num* capacity- 1]。数据类型支持INT32,数据格式要求为ND。支持非连续的Tensor。
- permuteTokenId(aclTensor*,计算输入):Device侧的aclTensor。计算公式中的permuteTokenId,代表输入permutedTokens每个位置对应的Token序号。shape与outIndex相同。取值范围[0,tokens_num - 1]。数据类型支持INT32,数据格式要求为ND。支持非连续的Tensor。
- routingMapOptional(aclTensor*,计算输入):Device侧的aclTensor,可选输入,当输入probsOptional为空指针时不需要此输入,应该传入空指针。计算公式中的routingMapOptional,代表对应位置的Token是否被对应专家处理,要求shape为一个2D的(tokens_num,experts_num),数据类型支持INT8、bool。当数据类型为INT8,取值支持0、1,当数据类型为bool,取值支持true、false,数据格式要求为ND。支持非连续的Tensor。
- permutedTokensOptional(aclTensor*,计算输入):Device侧的aclTensor,可选输入,当输入probsOptional为空指针时不需要此输入,应该传入空指针。当输入probsOptional为nullptr时不需要此输入。计算公式中的permutedTokensOptional,代表将每个专家选中token聚集在一起的结果,要求为一个维度为2D的Tensor,当paddedMode为false时,shape为(tokens_num * topK_num,hidden_size),其中topK_num <= 512。当paddedMode为true时,shape为(experts_num* capacity,hidden_size)。数据类型与unpermutedTokensGrad相同,数据格式要求为ND。支持非连续的Tensor。
- probsOptional(aclTensor*,计算输入):Device侧的aclTensor,可选输入,当不需要时为空指针。计算公式中的probsOptional,代表对应位置的Token被对应专家处理后的结果在最终结果中的权重,shape与routingMapOptional相同,数据类型与unpermutedTokensGrad相同,数据格式要求为ND。支持非连续的Tensor。
- paddedMode(bool,计算输入):host侧的BOOL。true表示开启paddedMode,false表示关闭paddedMode。开启paddedMode时,每个专家固定能够处理capacity个token,输入outIndex、permuteTokenId的shape为(experts_num* capacity,)。关闭paddedMode时,每个token固定被topK_num个专家处理,输入outIndex、permuteTokenId的shape为(tokens_num * topK_num,)。
- restoreShape(aclIntArray*,计算输入):host侧的aclIntArray。可选输入,当不需要时为空指针。支持的数据类型为INT32,size大小为2。当paddedMode为true后生效,否则不会对其进行操作。当paddedMode为true以后,此为unpermutedTokensGrad的shape。
- permutedTokensGradOut(aclTensor*,计算输出):输入permutedTokens的梯度,要求是一个2D的Tensor,当paddedMode为true时,shape为(tokens_num * capacity,hidden_size),当paddedMode为false时,shape为(tokens_num * topK_num,hidden_size)。数据类型与unpermutedTokensGrad相同,数据格式要求为ND。不支持非连续的Tensor。
- probsGradOutOptional(aclTensor*,计算输出):可选输出,当不需要时为空指针。输入probs的梯度,要求是一个2D的Tensor,shape为(tokens_num,experts_num)。数据类型与unpermutedTokensGrad相同,数据格式要求为ND。不支持非连续的Tensor。
- workspaceSize(uint64_t*,出参):返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**,出参):返回op执行器,包含了算子计算流程。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错: 161001(ACLNN_ERR_PARAM_NULLPTR): 1. 必选输入或输出的Tensor是空指针。 161002(ACLNN_ERR_PARAM_INVALID): 1. 输入或输出的数据类型不在支持的范围内。 561002(ACLNN_ERR_INNER_TILING_ERROR): 1. topK_num > 512 2. topK_num大于experts_num 3. capacity大于tokens_num 4. 输入或输出的shape不符合要求
aclnnMoeTokenUnpermuteWithRoutingMapGrad
参数说明:
- workspace(void*,入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnMoeTokenUnpermuteWithEpGradGetWorkspaceSize获取。
- executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
- stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
约束说明
topkNum <= 512
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_moe_token_unpermute_with_routing_map_grad.h"
#include <iostream>
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t> &shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
void PrintOutResult(std::vector<int64_t> &shape, void **deviceAddr) {
auto size = GetShapeSize(shape);
std::vector<float> resultData(size, 0);
auto ret = aclrtMemcpy(
resultData.data(), resultData.size() * sizeof(resultData[0]), *deviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(
ret == ACL_SUCCESS,
LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret);
return );
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
}
int Init(int32_t deviceId, aclrtStream *stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret);
return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret);
return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret);
return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T> &hostData,
const std::vector<int64_t> &shape, void **deviceAddr,
aclDataType dataType, aclTensor **tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret);
return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size,
ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret);
return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType,
strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret);
return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
bool paddedMode = false;
int32_t tokenNum = 1;
int32_t hiddenSize = 2;
int32_t expertNum = 2;
int32_t topK = 2;
int32_t outTokenNum = tokenNum * topK;
std::vector<int64_t> permutedTokensShape = {outTokenNum, hiddenSize};
std::vector<int64_t> unpermutedTokensGradShape = {tokenNum, hiddenSize};
std::vector<int64_t> probsShape = {tokenNum, expertNum};
std::vector<int64_t> outIndexShape = {outTokenNum};
std::vector<int64_t> permuteTokenIdShape = {outTokenNum};
std::vector<int64_t> routingMapShape = {tokenNum, expertNum};
std::vector<int64_t> permutedTokensGradShape = {outTokenNum, hiddenSize};
std::vector<int64_t> probsGradShape = {tokenNum, expertNum};
void* permutedTokensDeviceAddr = nullptr;
void* unpermutedTokensGradDeviceAddr = nullptr;
void* probsDeviceAddr = nullptr;
void* outIndexDeviceAddr = nullptr;
void* permuteTokenIdDeviceAddr = nullptr;
void* routingMapDeviceAddr = nullptr;
void* permutedTokensGradDeviceAddr = nullptr;
void* probsGradDeviceAddr = nullptr;
aclTensor* permutedTokens = nullptr;
aclTensor* unpermutedTokensGrad = nullptr;
aclTensor* probs = nullptr;
aclTensor* outIndex = nullptr;
aclTensor* permuteTokenId = nullptr;
aclTensor* routingMap = nullptr;
aclTensor *permutedTokensGrad = nullptr;
aclTensor *probsGrad = nullptr;
std::vector<float> permutedTokensHostData = {1, 1, 1, 1};
std::vector<float> unpermutedTokensGradHostData = {1, 1};
std::vector<float> probsHostData = {1, 1};
std::vector<int> outIndexHostData = {0, 1};
std::vector<int> permuteTokenIdHostData = {0, 0};
std::vector<int> routingMapHostData = {1, 1};
std::vector<float> permutedTokensGradHostData = {0, 0, 0, 0};
std::vector<float> probsGradHostData = {0, 0};
ret = CreateAclTensor(unpermutedTokensGradHostData, unpermutedTokensGradShape, &unpermutedTokensGradDeviceAddr, aclDataType::ACL_FLOAT, &unpermutedTokensGrad);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(outIndexHostData, outIndexShape, &outIndexDeviceAddr, aclDataType::ACL_INT32, &outIndex);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(permuteTokenIdHostData, permuteTokenIdShape, &permuteTokenIdDeviceAddr, aclDataType::ACL_INT32, &permuteTokenId);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(routingMapHostData, routingMapShape, &routingMapDeviceAddr, aclDataType::ACL_BOOL, &routingMap);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(permutedTokensHostData, permutedTokensShape, &permutedTokensDeviceAddr, aclDataType::ACL_FLOAT, &permutedTokens);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(probsHostData, probsShape, &probsDeviceAddr, aclDataType::ACL_FLOAT, &probs);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(permutedTokensGradHostData, permutedTokensGradShape, &permutedTokensGradDeviceAddr, aclDataType::ACL_FLOAT, &permutedTokensGrad);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(probsGradHostData, probsGradShape, &probsGradDeviceAddr, aclDataType::ACL_FLOAT, &probsGrad);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的API名称
uint64_t workspaceSize = 0;
aclOpExecutor *executor;
// 调用aclnnMoeTokenUnpermuteWithRoutingMapGrad第一段接口
ret = aclnnMoeTokenUnpermuteWithRoutingMapGradGetWorkspaceSize(unpermutedTokensGrad, outIndex, permuteTokenId, routingMap, permutedTokens, probs, paddedMode, nullptr, permutedTokensGrad, probsGrad, &workspaceSize, &executor);
CHECK_RET(
ret == ACL_SUCCESS,
LOG_PRINT("aclnnMoeTokenUnpermuteWithRoutingMapGradGetWorkspaceSize failed. ERROR: %d\n", ret);
return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void *workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret);
return ret);
}
// 调用aclnnMoeTokenUnpermuteWithRoutingMapGrad第二段接口
ret = aclnnMoeTokenUnpermuteWithRoutingMapGrad(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclnnMoeTokenUnpermuteWithRoutingMapGrad failed. ERROR: %d\n", ret);
return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret);
return ret);
// 5.获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
LOG_PRINT("permutedTokensGrad \n");
PrintOutResult(permutedTokensGradShape, &permutedTokensGradDeviceAddr);
LOG_PRINT("probsGrad \n");
PrintOutResult(probsGradShape, &probsGradDeviceAddr);
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(permutedTokens);
aclDestroyTensor(unpermutedTokensGrad);
aclDestroyTensor(outIndex);
aclDestroyTensor(permuteTokenId);
aclDestroyTensor(routingMap);
aclDestroyTensor(probs);
aclDestroyTensor(permutedTokensGrad);
aclDestroyTensor(probsGrad);
// 7. 释放device资源
aclrtFree(permutedTokensDeviceAddr);
aclrtFree(unpermutedTokensGradDeviceAddr);
aclrtFree(probsDeviceAddr);
aclrtFree(outIndexDeviceAddr);
aclrtFree(permuteTokenIdDeviceAddr);
aclrtFree(routingMapDeviceAddr);
aclrtFree(permutedTokensGradDeviceAddr);
aclrtFree(probsGradDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}