昇腾社区首页
中文
注册

aclnnMoeTokenUnpermuteWithRoutingMap

支持的产品型号

  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件
  • Atlas A3 训练系列产品/Atlas A3 推理系列产品

功能说明

  • 算子功能:对经过aclnnMoeTokenpermuteWithRoutingMap处理的permutedTokens,累加回原unpermutedTokens。根据sortedIndices存储的下标,获取permutedTokens中存储的输入数据;如果存在probs数据,permutedTokens会与probs相乘,最后进行累加求和,并输出计算结果。
  • 计算公式topK_num=permutedTokens.size(0)//routingMapOptional.size(0)topK\_num= permutedTokens.size(0) // routingMapOptional.size(0) numExperts=probs.size(1)numExperts = probs.size(1) numTokens=probs.size(0)numTokens = probs.size(0) capacity=sortedIndices.size(0)//numExpertscapacity = sortedIndices.size(0) // numExperts (1)probs不为None,padMode为true时:permutedProbs[i//capacity,sortedIndices[i]]=probs[i]permutedProbs [i//capacity,sortedIndices[i]]=probs[i] permutedTokens=permutedTokenspermutedProbspermutedTokens = permutedTokens * permutedProbs (2)probs不为None,padMode为false时:permutedProbs=probs.T.maskedSelect(routingMap.T)permutedProbs = probs.T.maskedSelect(routingMap.T) permutedTokens=permutedTokenspermutedProbspermutedTokens = permutedTokens * permutedProbs unpermutedTokens=zeros(restoreShape,dtype=permutedTokens.dtype,device=permutedTokens.device)unpermutedTokens= zeros(restoreShape, dtype=permutedTokens.dtype, device=permutedTokens.device) (3)probs为None,padMode为true时:permuteTokenId,outIndex=sortedIndices.sort(dim=1)permuteTokenId, outIndex= sortedIndices.sort(dim=-1) unpermutedTokens[permuteTokenId[i]]+=permutedTokens[outIndex[i]]unpermutedTokens[permuteTokenId[i]] += permutedTokens[outIndex[i]] (4)probs为None,padMode为false时:unpermutedTokens[i//topK_num]+=permutedTokens[sortedIndices[i]]unpermutedTokens[i//topK\_num] += permutedTokens[sortedIndices[i]]

    函数原型

    每个算子分为两段式接口,必须先调用“aclnnMoeTokenUnpermuteWithRoutingMapGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnMoeTokenUnpermuteWithRoutingMap”接口执行计算。
  • aclnnStatus aclnnMoeTokenUnpermuteWithRoutingMapGetWorkspaceSize(const aclTensor* permutedTokens, const aclTensor* sortedIndices, const aclTensor* routingMapOptional, const aclTensor* probsOptional, bool paddedMode, const aclIntArray* restoreShapeOptional, aclTensor* unpermuteTokensOut, const aclTensor* outIndex, const aclTensor* permuteTokenId, uint64_t* workspaceSize, aclOpExecutor** executor)

  • aclnnStatus MoeTokenUnpermuteWithRoutingMap(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)

    aclnnMoeTokenUnpermuteWithRoutingMapGetWorkspaceSize

    • 参数说明:

      • permutedTokens(aclTensor,计算输入):Device侧的aclTensor,输入token,要求为一个维度为2D的Tensor,当paddedMode为false时,shape为(tokens_num * topK_num,),当paddedMode为true时,shape为(experts_num capacity,),数据类型支持BFLOAT16、FLOAT16、FLOAT,数据格式要求为ND。支持非连续的Tensor
      • sortedIndices(aclTensor *,计算输入):Device侧的aclTensor,非droppad模式要求shape为一个1D的(tokens_num * topK_num,),数据类型支持INT32,数据格式要求为ND。索引取值范围[0,tokens_num * topK_num - 1], droppad模式要求shape为一个1D的(experts_num * capacity),数据类型支持INT32,数据格式要求为ND。索引取值范围[0,experts_num * capacity - 1]。支持非连续的Tensor
      • routingMapOptional(aclTensor*,计算输入):Device侧的aclTensor,可选输入,当输入probsOptional为空指针时不需要此输入,应该传入空指针。计算公式中的routingMapOptional,代表对应位置的Token是否被对应专家处理,要求shape为一个2D的(tokens_num,experts_num),数据类型支持INT8、bool。当数据类型为INT8,取值支持0、1,当数据类型为bool,取值支持true、false,数据格式要求为ND。支持非连续的Tensor
      • probsOptional(aclTensor*,计算输入):Device侧的aclTensor,可选输入,当不需要时为空指针。计算公式中的probsOptional,代表对应位置的Token被对应专家处理后的结果在最终结果中的权重,shape与routingMapOptional相同,数据类型与unpermutedTokensGrad相同,数据格式要求为ND。支持非连续的Tensor
      • paddedMode(bool, 计算输入):host侧的BOOL。可选输入,仅支持取值为false。true表示开启paddedMode,false表示关闭paddedMode,开启paddedMode时,输出outIndex、permuteTokenId的shape为(experts_num* capacity,),capacity表示每个专家能够处理的token个数,关闭paddedMode时,每个token固定被topK_num个专家处理,输出outIndex、permuteTokenId的shape为(tokens_num * topK_num,)。
      • restoreShapeOptional(aclIntArray*,计算输入):host侧的aclIntArray。支持的数据类型为INT32, size大小为2。为unpermutedTokens的shape。
      • unpermutedTokens(aclTensor*,计算输出):Device侧的aclTensor,正向输出结果,计算公式中的unpermutedTokens,要求为一个维度为2D的Tensor,shape为(tokens_num,hidden_size),数据类型支持BFLOAT16、FLOAT16、FLOAT,数据格式要求为ND。支持非连续的Tensor
      • outIndex(aclTensor,计算输出):Device侧的aclTensor,计算公式中outIndex,的当paddedMode为false时,要求shape为一个1D的(tokens_num * topK_num,),索引取值范围[0,tokens_num * topK_num - 1]。当paddedMode为true时,要求shape为一个1D的(experts_num capacity,)。索引取值范围[0,experts_num* capacity- 1]。数据类型支持INT32,数据格式要求为ND。支持非连续的Tensor
      • permuteTokenId(aclTensor,计算输出):Device侧的aclTensor,计算公式中的permuteTokenId,当paddedMode为false时,要求shape为一个1D的(tokens_num * topK_num,)。当paddedMode为true时,要求shape为一个1D的(experts_num capacity,)。索引取值范围[0,tokens_num - 1]。数据类型支持INT32,数据格式要求为ND。支持非连续的Tensor
      • workspaceSize(uint64_t*,出参):返回需要在Device侧申请的workspace大小。
      • executor(aclOpExecutor**,出参):返回op执行器,包含了算子计算流程。
    • 返回值:

      aclnnStatus:返回状态码,具体参见aclnn返回码

      第一段接口完成入参校验,出现以下场景时报错:
      161001(ACLNN_ERR_PARAM_NULLPTR): 1. 必选输入或输出的Tensor是空指针。
      161002(ACLNN_ERR_PARAM_INVALID): 1. 输入或输出的数据类型不在支持的范围内。
      561002(ACLNN_ERR_INNER_TILING_ERROR): 1. topK_num > 512。
                                            1. topK_num大于experts_num。
                                            2. capacity大于tokens_num。
                                            3. 输入或输出的shape不符合要求。

    aclnnMoeTokenUnpermuteWithRoutingMap

    • 参数说明:

      • workspace(void*,入参):在Device侧申请的workspace内存地址。
      • workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnMoeTokenUnpermuteWithRoutingMapGetWorkspaceSize获取。
      • executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
      • stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
    • 返回值:

      返回aclnnStatus状态码,具体参见aclnn返回码

    约束说明

    topkNum <= 512

    调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include "acl/acl.h"
#include "aclnnop/aclnn_moe_token_unpermute_with_routing_map.h"
#include <iostream>
#include <vector>

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)
#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
    int64_t shape_size = 1;
    for (auto i : shape) {
        shape_size *= i;
    }
    return shape_size;
}
int Init(int32_t deviceId, aclrtStream* stream) {
    // 固定写法,AscendCL初始化
    auto ret = aclInit(nullptr);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
    ret = aclrtSetDevice(deviceId);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
    ret = aclrtCreateStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
    return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
    auto size = GetShapeSize(shape) * sizeof(T);
    // 调用aclrtMalloc申请device侧内存
    auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
    // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
    ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
    // 计算连续tensor的strides
    std::vector<int64_t> strides(shape.size(), 1);
    for (int64_t i = shape.size() - 2; i >= 0; i--) {
        strides[i] = shape[i + 1] * strides[i + 1];
    }
    // 调用aclCreateTensor接口创建aclTensor
    *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                              shape.data(), shape.size(), *deviceAddr);
    return 0;
}
int main() {
    // 1. 固定写法,device/stream初始化, 参考acl对外接口列表
    // 根据自己的实际device填写deviceId
    int32_t deviceId = 0;
    aclrtStream stream;
    auto ret = Init(deviceId, &stream);
    // check根据自己的需要处理
    CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
    // 2. 构造输入与输出,需要根据API的接口定义构造
    std::vector<int64_t> permutedTokensShape = {2, 2};
    std::vector<int64_t> sortedIndicesShape = {2};
    std::vector<int64_t> routingMapOptionalShape = {2, 2};
    std::vector<int64_t> probsShape = {2, 2};
    std::vector<int64_t> unpermutedTokensShape = {2, 2};
    std::vector<int64_t> outIndexShape = {2};
    std::vector<int64_t> permuteTokenIdShape = {2};
    std::vector<int64_t> permuteProbsShape = {2};

    void* permutedTokensDeviceAddr = nullptr;
    void* sortedIndicesDeviceAddr = nullptr;
    void* routingMapOptionalDeviceAddr = nullptr;
    void* probsDeviceAddr = nullptr;
    void* unpermutedTokensDeviceAddr = nullptr;
    void* outIndexDeviceAddr = nullptr;
    void* permuteTokenIdDeviceAddr = nullptr;
    void* permuteProbsDeviceAddr = nullptr;
    //in
    aclTensor* permutedTokens = nullptr;
    aclTensor* sortedIndices = nullptr;
    aclTensor* routingMapOptional = nullptr;
    aclTensor* probs = nullptr;
    aclTensor* unpermutedTokens = nullptr;
    aclTensor* outIndex = nullptr;
    aclTensor* permuteTokenId = nullptr;
    aclTensor* permuteProbs = nullptr;
    bool padMode = true;
    std::vector<int64_t> restoreShapeOptionalData = {2, 2};
    aclIntArray *restoreShapeOptional = aclCreateIntArray(restoreShapeOptionalData.data(), restoreShapeOptionalData.size());

    //构造数据
    std::vector<float> permutedTokensHostData = {1.0, 1.0, 1.0, 1.0};
    std::vector<int> sortedIndicesHostData = {1, 1};
    std::vector<char> routingMapOptionalHostData = {1, 1, 1, 1};
    std::vector<float> probsHostData = {1, 1, 1, 1};
    
    std::vector<float> unpermutedTokensHostData = {0, 0, 0, 0};
    std::vector<int> outIndexHostData = {0, 0};
    std::vector<int> permuteTokenIdHostData = {0, 0};
    std::vector<float> permuteProbsHostData = {0, 0};
    // 创建self aclTensor
    ret = CreateAclTensor(permutedTokensHostData, permutedTokensShape, &permutedTokensDeviceAddr, aclDataType::ACL_FLOAT, &permutedTokens);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(sortedIndicesHostData, sortedIndicesShape, &sortedIndicesDeviceAddr, aclDataType::ACL_INT32, &sortedIndices);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(routingMapOptionalHostData, routingMapOptionalShape, &routingMapOptionalDeviceAddr, aclDataType::ACL_INT8, &routingMapOptional);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(probsHostData, probsShape, &probsDeviceAddr, aclDataType::ACL_FLOAT, &probs);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建out aclTensor
    ret = CreateAclTensor(unpermutedTokensHostData, unpermutedTokensShape, &unpermutedTokensDeviceAddr, aclDataType::ACL_FLOAT, &unpermutedTokens);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(outIndexHostData, outIndexShape, &outIndexDeviceAddr, aclDataType::ACL_INT32, &outIndex);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(permuteTokenIdHostData, permuteTokenIdShape, &permuteTokenIdDeviceAddr, aclDataType::ACL_INT32, &permuteTokenId);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(permuteProbsHostData, permuteProbsShape, &permuteProbsDeviceAddr, aclDataType::ACL_FLOAT, &permuteProbs);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 3. 调用CANN算子库API,需要修改为具体的API
    uint64_t workspaceSize = 0;
    aclOpExecutor* executor;
    // 调用aclnnMoeTokenUnpermuteWithRoutingMap第一段接口
    ret = aclnnMoeTokenUnpermuteWithRoutingMapGetWorkspaceSize(permutedTokens, sortedIndices, routingMapOptional, probs, padMode, restoreShapeOptional, 
                                                               unpermutedTokens, outIndex, permuteTokenId, permuteProbs, &workspaceSize, &executor);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMoeTokenUnpermuteWithRoutingMapGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
    // 根据第一段接口计算出的workspaceSize申请device内存
    void* workspaceAddr = nullptr;
    if (workspaceSize > 0) {
        ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
    }
    ret = aclnnMoeTokenUnpermuteWithRoutingMap(workspaceAddr, workspaceSize, executor, stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMoeTokenUnpermuteWithRoutingMapfailed. ERROR: %d\n", ret); return ret);
    // 4. 固定写法,同步等待任务执行结束
    ret = aclrtSynchronizeStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
    // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
    auto unpermutedTokensSize = GetShapeSize(unpermutedTokensShape);
    std::vector<float> unpermutedTokensData(unpermutedTokensSize, 0);
    ret = aclrtMemcpy(unpermutedTokensData.data(), unpermutedTokensData.size() * sizeof(unpermutedTokensData[0]), unpermutedTokensDeviceAddr, unpermutedTokensSize * sizeof(float),
                      ACL_MEMCPY_DEVICE_TO_HOST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
    for (int64_t i = 0; i < unpermutedTokensSize; i++) {
        LOG_PRINT("unpermutedTokensData[%ld] is: %f\n", i, unpermutedTokensData[i]);
    }

    // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
    aclDestroyTensor(permutedTokens);
    aclDestroyTensor(sortedIndices);
    aclDestroyTensor(routingMapOptional);
    aclDestroyTensor(probs);
    aclDestroyTensor(unpermutedTokens);
    aclDestroyTensor(outIndex);
    aclDestroyTensor(permuteTokenId);
    aclDestroyTensor(permuteProbs);

    // 7. 释放device资源,需要根据具体API的接口定义修改
    aclrtFree(permutedTokensDeviceAddr);
    aclrtFree(sortedIndicesDeviceAddr);
    aclrtFree(routingMapOptionalDeviceAddr);
    aclrtFree(probsDeviceAddr);
    aclrtFree(unpermutedTokensDeviceAddr);
    aclrtFree(outIndexDeviceAddr);
    aclrtFree(permuteTokenIdDeviceAddr);
    aclrtFree(permuteProbsDeviceAddr);

    if (workspaceSize > 0) {
      aclrtFree(workspaceAddr);
    }
    aclrtDestroyStream(stream);
    aclrtResetDevice(deviceId);
    aclFinalize();
    return 0;
}