aclnnMoeTokenUnpermuteWithEp
支持的产品型号
Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件 Atlas A3 训练系列产品/Atlas A3 推理系列产品
功能说明
算子功能: 根据sortedIndices存储的下标位置,去获取permutedTokens中的输入数据与probs相乘,并进行合并累加。
计算公式:
(1)probs非None计算公式如下,其中,,:
(2)probs为None计算公式如下,其中,:
函数原型
每个算子分为两段式接口,必须先调用“aclnnMoeTokenUnpermuteWithEpGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnMoeTokenUnpermuteWithEp”接口执行计算。
aclnnStatus aclnnMoeTokenUnpermuteWithEpGetWorkspaceSize(const aclTensor *permutedTokens, const aclTensor *sortedIndices, const aclTensor *probsOptional, int64_t topKOptional, const aclIntArray *rangeOptional, bool paddedModeOptional, const aclIntArray *restoreShapeOptional, aclTensor *unpermuteTokensOut, uint64_t *workspaceSize, aclOpExecutor **executor)
aclnnStatus aclnnMoeTokenUnpermuteWithEp(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
aclnnMoeTokenUnpermuteWithEpGetWorkspaceSize
参数说明:
permutedTokens(aclTensor *,计算输入):表述经过扩展并排序过的tokens,公式中的
permutedTokens
,Device侧的aclTensor。shape支持2D维度,shape为((rangeOptional[1] - rangeOptional[0])*topK_num,hidden_size)。数据类型支持BFLOAT16、FLOAT16、FLOAT32,数据格式支持ND。支持非连续的Tensor,不支持空Tensor。sortedIndices(aclTensor *,计算输入):表示需要计算的数据在permutedTokens中的位置,公式中的
sortedIndices
,Device侧的aclTensor。shape支持1D维度,shape为(num_tokens * topK_num),num_tokens为原tokens的数目。要求元素值大于等于0小于2134372523。数据类型支持INT32,数据格式支持ND。支持非连续的Tensor,不支持空Tensor。probsOptional(aclTensor *,计算输入):表示输入tokens对应的专家概率,Device侧的aclTensor。可选输入,传入非空并合法的Tensor时,permutedTokens中的输入数据与probsOptional相乘;传入空时,permutedTokens中的输入数据不进行乘法。shape支持2D维度,shape为(num_tokens,topK_num),num_tokens为原tokens的数目。数据类型支持BFLOAT16、FLOAT16、FLOAT32,数据格式支持ND。支持非连续的Tensor。
topKOptional(int64_t,计算输入):被选中的专家个数。
rangeOptional(aclIntArray *,计算输入):ep切分的有效范围,size为2。为空时,忽略topKOptional,执行逻辑回退到aclnnMoeTokenUnpermute。
paddedModeOptional(bool,计算输入):true表示开启paddedMode,false表示关闭paddedMode,paddedMode解释见restoreShapeOptional参数。目前仅支持false。
restoreShapeOptional(aclIntArray *,计算输入):paddedMode=true时生效,否则不会对其进行操作。paddedMode=true时,unpermuteTokensOut的shape将表征为restoreShape。目前仅支持nullptr。
unpermuteTokensOut(aclTensor *,计算输出):表示permutedTokens反重排的输出结果,公式中的
out
,Device侧的aclTensor。shape支持2D维度,paddedMode=false时,shape为(num_tokens,hidden_size),paddedMode=true时,shape与restoreShapeOptional保持一致。数据类型支持BFLOAT16、FLOAT16、FLOAT32,数据格式支持ND。workspaceSize(uint64_t *,出参):返回需要在Device侧申请的workspace大小。
executor(aclOpExecutor **,出参):返回op执行器,包含了算子计算流程。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错: 161001(ACLNN_ERR_PARAM_NULLPTR):1. 输入和输出的Tensor是空指针。 161002(ACLNN_ERR_PARAM_INVALID):1. 输入和输出的数据类型不在支持的范围内。
aclnnMoeTokenUnpermuteWithEp
参数说明:
- workspace(void *,入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnMoeTokenUnpermuteWithEpGetWorkspaceSize获取。
- executor(aclOpExecutor *,入参):op执行器,包含了算子计算流程。
- stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
约束说明
- topK_num <= 512。
- 不支持paddedModeOptional为
True
。 - 当rangeOptional为空时,忽略topKOptional,执行逻辑回退到aclnnMoeTokenUnpermute。
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include "acl/acl.h"
#include "aclnnop/aclnn_moe_token_unpermute_with_ep.h"
#include <iostream>
#include <vector>
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t> &shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
void PrintOutResult(std::vector<int64_t> &shape, void **deviceAddr) {
auto size = GetShapeSize(shape);
std::vector<float> resultData(size, 0);
auto ret = aclrtMemcpy(
resultData.data(), resultData.size() * sizeof(resultData[0]), *deviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(
ret == ACL_SUCCESS,
LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret);
return );
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("mean result[%ld] is: %f\n", i, resultData[i]);
}
}
int Init(int32_t deviceId, aclrtStream *stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret);
return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret);
return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret);
return ret);
return 0;
}
template <typename T>
int CreateAclIntArray(const std::vector<T>& hostData, void** deviceAddr, aclIntArray** intArray) {
auto size = GetShapeSize(hostData) * sizeof(T);
// Call aclrtMalloc to allocate memory on the device.
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// Call aclrtMemcpy to copy the data on the host to the memory on the device.
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// Call aclCreateIntArray to create an aclIntArray.
*intArray = aclCreateIntArray(hostData.data(), hostData.size());
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T> &hostData,
const std::vector<int64_t> &shape, void **deviceAddr,
aclDataType dataType, aclTensor **tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret);
return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size,
ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret);
return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType,
strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret);
return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<float> permutedTokensData = {2, 2, 1, 1, 3, 3, 2, 2};
std::vector<int64_t> permutedTokensShape = {4, 2};
void *permutedTokensAddr = nullptr;
aclTensor *permutedTokens = nullptr;
ret = CreateAclTensor(permutedTokensData, permutedTokensShape,
&permutedTokensAddr, aclDataType::ACL_FLOAT,
&permutedTokens);
CHECK_RET(ret == ACL_SUCCESS, return ret);
std::vector<int> sortedIndicesData = {2, 0, 4, 1, 5, 3};
std::vector<int64_t> sortedIndicesShape = {6};
void *sortedIndicesAddr = nullptr;
aclTensor *sortedIndices = nullptr;
ret =
CreateAclTensor(sortedIndicesData, sortedIndicesShape, &sortedIndicesAddr,
aclDataType::ACL_INT32, &sortedIndices);
CHECK_RET(ret == ACL_SUCCESS, return ret);
std::vector<float> probsOptionalData = {1, 1, 1, 1, 1, 1};
std::vector<int64_t> probsOptionalShape = {3, 2};
void *probsOptionalAddr = nullptr;
aclTensor *probsOptional = nullptr;
ret =
CreateAclTensor(probsOptionalData, probsOptionalShape, &probsOptionalAddr,
aclDataType::ACL_FLOAT, &probsOptional);
CHECK_RET(ret == ACL_SUCCESS, return ret);
int64_t num_topk = 2;
void* rangeDeviceAddr = nullptr;
aclIntArray* range = nullptr;
std::vector<int64_t> rangeHostData = {1, 5};
ret = CreateAclIntArray(rangeHostData, &rangeDeviceAddr, &range);
CHECK_RET(ret == ACL_SUCCESS, return ret);
std::vector<float> outData = {0, 0, 0, 0, 0, 0};
std::vector<int64_t> outShape = {3, 2};
void *outAddr = nullptr;
aclTensor *out = nullptr;
ret = CreateAclTensor(outData, outShape, &outAddr, aclDataType::ACL_FLOAT,
&out);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的API名称
uint64_t workspaceSize = 0;
aclOpExecutor *executor;
// 调用aclnnMoeTokenUnpermuteWithEp第一段接口
ret = aclnnMoeTokenUnpermuteWithEpGetWorkspaceSize(permutedTokens, sortedIndices,
probsOptional, num_topk, range, false, nullptr,
out, &workspaceSize, &executor);
CHECK_RET(
ret == ACL_SUCCESS,
LOG_PRINT("aclnnMoeTokenUnpermuteWithEpGetWorkspaceSize failed. ERROR: %d\n",
ret);
return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void *workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret);
return ret);
}
// 调用aclnnMoeTokenUnpermuteWithEp第二段接口
ret = aclnnMoeTokenUnpermuteWithEp(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclnnMoeTokenUnpermuteWithEp failed. ERROR: %d\n", ret);
return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret);
return ret);
// 5.获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
PrintOutResult(outShape, &outAddr);
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(permutedTokens);
aclDestroyTensor(sortedIndices);
aclDestroyTensor(probsOptional);
aclDestroyTensor(out);
// 7. 释放device资源
aclrtFree(permutedTokensAddr);
aclrtFree(sortedIndicesAddr);
aclrtFree(probsOptionalAddr);
aclrtFree(outAddr);
aclrtFree(rangeDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}