昇腾社区首页
中文
注册

aclnnMoeTokenUnpermuteWithEp

支持的产品型号

  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件
  • Atlas A3 训练系列产品/Atlas A3 推理系列产品

功能说明

算子功能: 根据sortedIndices存储的下标位置,去获取permutedTokens中的输入数据与probs相乘,并进行合并累加。

计算公式:

sortedIndices=sortedIndices[rangeOptional[0]<=i<rangeOptional[1]]sortedIndices = sortedIndices[rangeOptional[0]<=i<rangeOptional[1]]

(1)probs非None计算公式如下,其中i0,1,2,...,num_tokens1i \in {0, 1, 2, ..., num\_tokens - 1}j0,1,2,...,topK_num1j \in {0, 1, 2, ..., topK\_num - 1}k0,1,2,...,num_tokenstopK_numk \in {0, 1, 2, ..., num\_tokens * topK\_num}

permutedTokens=permutedTokens.indexSelect(0,sortedIndices)permutedTokens = permutedTokens.indexSelect(0, sortedIndices) permutedTokensk=permutedTokenskprobsi,jpermutedTokens_{k} = permutedTokens_{k} * probs{i,j} outi=k=itopK_num(i+1)topK_num1permutedTokenskout_{i} = \sum_{k=i*topK\_num}^{(i+1)*topK\_num - 1 } permutedTokens_{k}

(2)probs为None计算公式如下,其中i0,1,2,...,num_tokens1i \in {0, 1, 2, ..., num\_tokens - 1}j0,1,2,...,topK_num1j \in {0, 1, 2, ..., topK\_num - 1}

permutedTokens=permutedTokens.indexSelect(0,sortedIndices)permutedTokens = permutedTokens.indexSelect(0, sortedIndices) outi=k=itopK_num(i+1)topK_num1permutedTokenskout_{i} = \sum_{k=i*topK\_num}^{(i+1)*topK\_num - 1 } permutedTokens_{k}

函数原型

每个算子分为两段式接口,必须先调用“aclnnMoeTokenUnpermuteWithEpGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnMoeTokenUnpermuteWithEp”接口执行计算。

  • aclnnStatus aclnnMoeTokenUnpermuteWithEpGetWorkspaceSize(const aclTensor *permutedTokens, const aclTensor *sortedIndices, const aclTensor *probsOptional, int64_t topKOptional, const aclIntArray *rangeOptional, bool paddedModeOptional, const aclIntArray *restoreShapeOptional, aclTensor *unpermuteTokensOut, uint64_t *workspaceSize, aclOpExecutor **executor)

  • aclnnStatus aclnnMoeTokenUnpermuteWithEp(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

aclnnMoeTokenUnpermuteWithEpGetWorkspaceSize

  • 参数说明:

    • permutedTokens(aclTensor *,计算输入):表述经过扩展并排序过的tokens,公式中的permutedTokens,Device侧的aclTensor。shape支持2D维度,shape为((rangeOptional[1] - rangeOptional[0])*topK_num,hidden_size)。数据类型支持BFLOAT16、FLOAT16、FLOAT32,数据格式支持ND。支持非连续的Tensor,不支持空Tensor。

    • sortedIndices(aclTensor *,计算输入):表示需要计算的数据在permutedTokens中的位置,公式中的sortedIndices,Device侧的aclTensor。shape支持1D维度,shape为(num_tokens * topK_num),num_tokens为原tokens的数目。要求元素值大于等于0小于2134372523。数据类型支持INT32,数据格式支持ND。支持非连续的Tensor,不支持空Tensor。

    • probsOptional(aclTensor *,计算输入):表示输入tokens对应的专家概率,Device侧的aclTensor。可选输入,传入非空并合法的Tensor时,permutedTokens中的输入数据与probsOptional相乘;传入空时,permutedTokens中的输入数据不进行乘法。shape支持2D维度,shape为(num_tokens,topK_num),num_tokens为原tokens的数目。数据类型支持BFLOAT16、FLOAT16、FLOAT32,数据格式支持ND。支持非连续的Tensor

    • topKOptional(int64_t,计算输入):被选中的专家个数。

    • rangeOptional(aclIntArray *,计算输入):ep切分的有效范围,size为2。为空时,忽略topKOptional,执行逻辑回退到aclnnMoeTokenUnpermute

    • paddedModeOptional(bool,计算输入):true表示开启paddedMode,false表示关闭paddedMode,paddedMode解释见restoreShapeOptional参数。目前仅支持false。

    • restoreShapeOptional(aclIntArray *,计算输入):paddedMode=true时生效,否则不会对其进行操作。paddedMode=true时,unpermuteTokensOut的shape将表征为restoreShape。目前仅支持nullptr。

    • unpermuteTokensOut(aclTensor *,计算输出):表示permutedTokens反重排的输出结果,公式中的out,Device侧的aclTensor。shape支持2D维度,paddedMode=false时,shape为(num_tokens,hidden_size),paddedMode=true时,shape与restoreShapeOptional保持一致。数据类型支持BFLOAT16、FLOAT16、FLOAT32,数据格式支持ND。

    • workspaceSize(uint64_t *,出参):返回需要在Device侧申请的workspace大小。

    • executor(aclOpExecutor **,出参):返回op执行器,包含了算子计算流程。

  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    161001(ACLNN_ERR_PARAM_NULLPTR):1. 输入和输出的Tensor是空指针。
    161002(ACLNN_ERR_PARAM_INVALID):1. 输入和输出的数据类型不在支持的范围内。

aclnnMoeTokenUnpermuteWithEp

  • 参数说明:

    • workspace(void *,入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnMoeTokenUnpermuteWithEpGetWorkspaceSize获取。
    • executor(aclOpExecutor *,入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束说明

  • topK_num <= 512。
  • 不支持paddedModeOptional为True
  • 当rangeOptional为空时,忽略topKOptional,执行逻辑回退到aclnnMoeTokenUnpermute

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例


#include "acl/acl.h"
#include "aclnnop/aclnn_moe_token_unpermute_with_ep.h"
#include <iostream>
#include <vector>

#define CHECK_RET(cond, return_expr)                                           \
  do {                                                                         \
    if (!(cond)) {                                                             \
      return_expr;                                                             \
    }                                                                          \
  } while (0)

#define LOG_PRINT(message, ...)                                                \
  do {                                                                         \
    printf(message, ##__VA_ARGS__);                                            \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t> &shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

void PrintOutResult(std::vector<int64_t> &shape, void **deviceAddr) {
  auto size = GetShapeSize(shape);
  std::vector<float> resultData(size, 0);
  auto ret = aclrtMemcpy(
      resultData.data(), resultData.size() * sizeof(resultData[0]), *deviceAddr,
      size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(
      ret == ACL_SUCCESS,
      LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret);
      return );
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("mean result[%ld] is: %f\n", i, resultData[i]);
  }
}

int Init(int32_t deviceId, aclrtStream *stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret);
            return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS,
            LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret);
            return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS,
            LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret);
            return ret);
  return 0;
}

template <typename T>
int CreateAclIntArray(const std::vector<T>& hostData, void** deviceAddr, aclIntArray** intArray) {
  auto size = GetShapeSize(hostData) * sizeof(T);
  // Call aclrtMalloc to allocate memory on the device.
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

  // Call aclrtMemcpy to copy the data on the host to the memory on the device.
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // Call aclCreateIntArray to create an aclIntArray.
  *intArray = aclCreateIntArray(hostData.data(), hostData.size());
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T> &hostData,
                    const std::vector<int64_t> &shape, void **deviceAddr,
                    aclDataType dataType, aclTensor **tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS,
            LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret);
            return ret);
  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size,
                    ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS,
            LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret);
            return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType,
                            strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret);
            return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造

  std::vector<float> permutedTokensData = {2, 2, 1, 1, 3, 3, 2, 2};
  std::vector<int64_t> permutedTokensShape = {4, 2};
  void *permutedTokensAddr = nullptr;
  aclTensor *permutedTokens = nullptr;

  ret = CreateAclTensor(permutedTokensData, permutedTokensShape,
                        &permutedTokensAddr, aclDataType::ACL_FLOAT,
                        &permutedTokens);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  std::vector<int> sortedIndicesData = {2, 0, 4, 1, 5, 3};
  std::vector<int64_t> sortedIndicesShape = {6};
  void *sortedIndicesAddr = nullptr;
  aclTensor *sortedIndices = nullptr;

  ret =
      CreateAclTensor(sortedIndicesData, sortedIndicesShape, &sortedIndicesAddr,
                      aclDataType::ACL_INT32, &sortedIndices);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  std::vector<float> probsOptionalData = {1, 1, 1, 1, 1, 1};
  std::vector<int64_t> probsOptionalShape = {3, 2};
  void *probsOptionalAddr = nullptr;
  aclTensor *probsOptional = nullptr;

  ret =
      CreateAclTensor(probsOptionalData, probsOptionalShape, &probsOptionalAddr,
                      aclDataType::ACL_FLOAT, &probsOptional);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  int64_t num_topk = 2;
  void* rangeDeviceAddr = nullptr;
  aclIntArray* range = nullptr;
  std::vector<int64_t> rangeHostData = {1, 5};
  ret = CreateAclIntArray(rangeHostData, &rangeDeviceAddr, &range);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  std::vector<float> outData = {0, 0, 0, 0, 0, 0};
  std::vector<int64_t> outShape = {3, 2};
  void *outAddr = nullptr;
  aclTensor *out = nullptr;

  ret = CreateAclTensor(outData, outShape, &outAddr, aclDataType::ACL_FLOAT,
                        &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);


  // 3. 调用CANN算子库API,需要修改为具体的API名称
  uint64_t workspaceSize = 0;
  aclOpExecutor *executor;

  // 调用aclnnMoeTokenUnpermuteWithEp第一段接口
  ret = aclnnMoeTokenUnpermuteWithEpGetWorkspaceSize(permutedTokens, sortedIndices,
                                                     probsOptional, num_topk, range, false, nullptr,
                                                     out, &workspaceSize, &executor);
  CHECK_RET(
      ret == ACL_SUCCESS,
      LOG_PRINT("aclnnMoeTokenUnpermuteWithEpGetWorkspaceSize failed. ERROR: %d\n",
                ret);
      return ret);

  // 根据第一段接口计算出的workspaceSize申请device内存
  void *workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS,
              LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret);
              return ret);
  }

  // 调用aclnnMoeTokenUnpermuteWithEp第二段接口
  ret = aclnnMoeTokenUnpermuteWithEp(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS,
            LOG_PRINT("aclnnMoeTokenUnpermuteWithEp failed. ERROR: %d\n", ret);
            return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS,
            LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret);
            return ret);

  // 5.获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  PrintOutResult(outShape, &outAddr);

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(permutedTokens);
  aclDestroyTensor(sortedIndices);
  aclDestroyTensor(probsOptional);
  aclDestroyTensor(out);

  // 7. 释放device资源
  aclrtFree(permutedTokensAddr);
  aclrtFree(sortedIndicesAddr);
  aclrtFree(probsOptionalAddr);
  aclrtFree(outAddr);
  aclrtFree(rangeDeviceAddr);

  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();

  return 0;
}