aclnnMoeTokenPermuteWithEpGrad
支持的产品型号
Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件 Atlas A3 训练系列产品/Atlas A3 推理系列产品
功能说明
- 算子功能:aclnnMoeTokenPermuteWithEp的反向传播计算。
- 计算公式:
函数原型
每个算子分为两段式接口,必须先调用 “aclnnMoeTokenPermuteWithEpGradGetWorkspaceSize” 接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用 “aclnnMoeTokenPermuteWithEpGrad” 接口执行计算。
aclnnStatus aclnnMoeTokenPermuteWithEpGradGetWorkspaceSize(const aclTensor *permutedTokenOutputGrad, const aclTensor *sortedIndices, const aclTensor *permutedProbsOutputGradOptional, int64_t numTopk, const aclIntArray *rangeOptional, bool paddedModeOptional, aclTensor *tokensGradOut, aclTensor *probsGradOut, uint64_t *workspaceSize, aclOpExecutor **executor)
aclnnStatus aclnnMoeTokenPermuteWithEpGrad(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
aclnnMoeTokenPermuteWithEpGradGetWorkspaceSize
参数说明::
- permutedTokenOutputGrad(aclTensor *,计算输入):表示正向输出permutedTokens的梯度,公式中的
permutedTokenOutputGrad
,Device侧的aclTensor。shape支持2D维度,shape为((rangeOptional[1] - rangeOptional[0])* topK_num,hidden_size),topK_num为numTopk的值。数据类型支持BFLOAT16、FLOAT16、FLOAT32,数据格式支持ND。支持非连续的Tensor,不支持空Tensor。 - sortedIndices(aclTensor *,计算输入):表示正向输出的permuteTokensOut和正向输入的tokens的映射关系,公式中的
sortedIndices
,Device侧的aclTensor。shape支持1D维度,shape为(num_tokens * topK_num),num_tokens为token数目。数据类型支持INT32,数据格式支持ND。支持非连续输入,不支持空Tensor。 - permutedProbsOutputGradOptional(aclTensor*,计算输入):表示正向输出permutedProbs的梯度Device侧的aclTensor。可选计算输入,与计算输出probsGradOut对应,传入空则不输出probsGradOut。shape支持1D维度,shape为((rangeOptional[1] - rangeOptional[0]) * topK_num),topK_num为numTopk的值。数据类型支持BFLOAT16、FLOAT16、FLOAT32,数据格式支持ND。支持非连续输入。
- numTopk(int64_t,计算输入):被选中的专家个数。
- rangeOptional(aclIntArray *,计算输入):ep切分的有效范围,size为2。为空时,忽略permutedProbsOutputGradOptional和probsGradOut,执行逻辑回退到aclnnMoeTokenPermuteGrad。
- paddedModeOptional(bool,计算输入):true表示开启paddedMode,false表示关闭paddedMode,目前仅支持false。
- tokensGradOut(aclTensor *,计算输出):输入token的梯度,要求为一个维度为2D的Tensor,shape为(num_tokens,hidden_size),数据类型支持FLOAT、FLOAT16、BFLOAT16,数据格式支持ND。
- probsGradOut(aclTensor *,计算输出):输入probs的梯度,要求为一个维度为2D的Tensor,shape为(num_tokens,topK_num),数据类型支持FLOAT、FLOAT16、BFLOAT16,数据格式支持ND。
- workspaceSize(uint64_t *,出参):返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor **,出参):返回op执行器,包含了算子计算流程。
- permutedTokenOutputGrad(aclTensor *,计算输入):表示正向输出permutedTokens的梯度,公式中的
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错: 返回161001(ACLNN_ERR_PARAM_NULLPTR):1. 输入和输出的Tensor是空指针。 返回161002(ACLNN_ERR_PARAM_INVALID):1. 输入和输出的数据类型和数据格式不在支持的范围之内。
aclnnMoeTokenPermuteWithEpGrad
参数说明:
- workspace(void *,入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnMoeTokenPermuteWithEpGradGetWorkspaceSize获取。
- executor(aclOpExecutor *,入参):op执行器,包含了算子计算流程。
- stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
约束说明
- top_k <= 512。
- 不支持paddedModeOptional为
True
。 - 当rangeOptional为空时,忽略permutedProbsOutputGradOptional和probsGradOut,执行逻辑回退到aclnnMoeTokenPermuteGrad。
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include "acl/acl.h"
#include "aclnnop/aclnn_moe_token_permute_with_ep_grad.h"
#include <iostream>
#include <vector>
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t> &shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
void PrintOutResult(std::vector<int64_t> &shape, void **deviceAddr) {
auto size = GetShapeSize(shape);
std::vector<float> resultData(size, 0);
auto ret = aclrtMemcpy(
resultData.data(), resultData.size() * sizeof(resultData[0]), *deviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(
ret == ACL_SUCCESS,
LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret);
return );
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("mean result[%ld] is: %f\n", i, resultData[i]);
}
}
int Init(int32_t deviceId, aclrtStream *stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret);
return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret);
return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret);
return ret);
return 0;
}
template <typename T>
int CreateAclIntArray(const std::vector<T>& hostData, void** deviceAddr, aclIntArray** intArray) {
auto size = GetShapeSize(hostData) * sizeof(T);
// Call aclrtMalloc to allocate memory on the device.
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// Call aclrtMemcpy to copy the data on the host to the memory on the device.
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// Call aclCreateIntArray to create an aclIntArray.
*intArray = aclCreateIntArray(hostData.data(), hostData.size());
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T> &hostData,
const std::vector<int64_t> &shape, void **deviceAddr,
aclDataType dataType, aclTensor **tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret);
return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size,
ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret);
return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType,
strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret);
return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
int64_t num_topk = 2;
std::vector<float> permuted_token_output_grad_Data = {2, 2, 1, 1, 3, 3, 2, 2};
std::vector<float> permuted_prob_output_grad_Data = {0.2, 0.5, 0.4, 0.4};
std::vector<int64_t> permuted_token_output_grad_Shape = {4, 2};
std::vector<int64_t> permuted_prob_output_grad_Shape = {4};
void *permuted_token_output_grad_Addr = nullptr;
void *permuted_prob_output_grad_Addr = nullptr;
aclTensor *permuted_token_output_grad = nullptr;
aclTensor *permuted_prob_output_grad = nullptr;
ret = CreateAclTensor(permuted_token_output_grad_Data, permuted_token_output_grad_Shape,
&permuted_token_output_grad_Addr, aclDataType::ACL_BF16,
&permuted_token_output_grad);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(permuted_prob_output_grad_Data, permuted_prob_output_grad_Shape,
&permuted_prob_output_grad_Addr, aclDataType::ACL_BF16,
&permuted_prob_output_grad);
CHECK_RET(ret == ACL_SUCCESS, return ret);
std::vector<int> sortedIndicesData = {2, 0, 4, 1, 5, 3};
std::vector<int64_t> sortedIndicesShape = {6};
void *sortedIndicesAddr = nullptr;
aclTensor *sortedIndices = nullptr;
ret = CreateAclTensor(sortedIndicesData, sortedIndicesShape, &sortedIndicesAddr,
aclDataType::ACL_INT32, &sortedIndices);
CHECK_RET(ret == ACL_SUCCESS, return ret);
void* rangeDeviceAddr = nullptr;
aclIntArray* range = nullptr;
std::vector<int64_t> rangeHostData = {1, 5};
ret = CreateAclIntArray(rangeHostData, &rangeDeviceAddr, &range);
CHECK_RET(ret == ACL_SUCCESS, return ret);
std::vector<float> tokenOutData = {0, 0, 0, 0, 0, 0};
std::vector<int64_t> tokenOutShape = {3, 2};
void *tokenOutAddr = nullptr;
aclTensor *tokenOut = nullptr;
ret = CreateAclTensor(tokenOutData, tokenOutShape, &tokenOutAddr, aclDataType::ACL_BF16,
&tokenOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
std::vector<float> probOutData = {0, 0, 0, 0, 0, 0};
std::vector<int64_t> probOutShape = {3, 2};
void *probOutAddr = nullptr;
aclTensor *probOut = nullptr;
ret = CreateAclTensor(probOutData, probOutShape, &probOutAddr, aclDataType::ACL_BF16,
&probOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的API名称
uint64_t workspaceSize = 0;
aclOpExecutor *executor;
// 调用aclnnMoeTokenPermuteWithEpGrad第一段接口
ret = aclnnMoeTokenPermuteWithEpGradGetWorkspaceSize(permuted_token_output_grad, sortedIndices, permuted_prob_output_grad,
num_topk, range, false,
tokenOut, probOut, &workspaceSize, &executor);
CHECK_RET(
ret == ACL_SUCCESS,
LOG_PRINT("aclnnMoeTokenPermuteWithEpGradGetWorkspaceSize failed. ERROR: %d\n",
ret);
return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void *workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret);
return ret);
}
// 调用aclnnMoeTokenPermuteWithEpGrad第二段接口
ret = aclnnMoeTokenPermuteWithEpGrad(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclnnMoeTokenPermuteWithEpGrad failed. ERROR: %d\n", ret);
return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret);
return ret);
// 5.获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
PrintOutResult(tokenOutShape, &tokenOutAddr);
PrintOutResult(probOutShape, &probOutAddr);
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(permuted_token_output_grad);
aclDestroyTensor(permuted_prob_output_grad);
aclDestroyTensor(sortedIndices);
aclDestroyTensor(tokenOut);
aclDestroyTensor(probOut);
// 7. 释放device资源
aclrtFree(permuted_token_output_grad_Addr);
aclrtFree(permuted_prob_output_grad_Addr);
aclrtFree(sortedIndicesAddr);
aclrtFree(tokenOutAddr);
aclrtFree(probOutAddr);
aclrtFree(rangeDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}