aclnnMoeEPLBUpdateExpert
支持的产品型号
Atlas A3 训练系列产品/Atlas A3 推理系列产品
功能说明
算子功能:为了解决负载不均衡的场景,MOE网络中常用EPLB(Expert Parallelism Load Balancer)算法进行冗余专家部署,一个逻辑专家在多个卡上都有实例部署(即有多个物理专家),在这种场景下,MoeEPLBUpdateExpert算子可以完成每个token的topK个专家逻辑专家号到物理卡号的映射。
函数原型
每个算子分为两段式接口,必须先调用 “aclnnMoeEPLBUpdateExpertGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnMoeEPLBUpdateExpert”接口执行计算。
aclnnStatus aclnnMoeEPLBUpdateExpertGetWorkspaceSize(const aclTensor* expertIds, const aclTensor* eplbTable, int64_t localRankId, int64_t worldSize, int64_t balanceMode, aclTensor* balancedExpertIds, uint64_t* workspaceSize, aclOpExecutor** executor)
aclnnStatus aclnnMoeEPLBUpdateExpert(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)
计算公式: 对于ExpertIds中的第个值,即第i个token:
注意该接口必须与aclnnMoeDistributeDispatchV2及aclnnMoeDistributeCombineV2或aclnnMoeDistributeCombineAddRmsNorm算子配套使用,调用顺序为aclnnEPLBUpdateExpert,aclnnMoeDistributeDispatchV2,aclnnMoeDistributeCombineV2或aclnnMoeDistributeCombineAddRmsNorm。
aclnnMoeEPLBUpdateExpertGetWorkspaceSize
参数说明:
- expertIds(aclTensor*,计算输入):每个token的topK个专家索引,Device侧的aclTensor,要求为一个2D的Tensor,shape为 (Bs, K)。数据类型支持INT32,数据格式要求为ND,支持非连续的Tensor。
- eplbTable(aclTensor*,计算输入):逻辑专家到物理专家的映射表,外部调用者需保证输入Tensor的值正确:每行第一列为行号对应逻辑专家部署的实例数count,值需大于等于1,每行[1, count]列为对应实例的卡号,取值范围[0, moe_expert_num),Device侧的aclTensor,要求是一个2D的Tensor。数据类型支持INT32,数据格式要求为ND,支持非连续的Tensor。shape为 (moeExperNum, F)。
- localRankId(int64_t,计算输入):本卡Id,数据类型支持INT64。取值支持[0, worldSize)。同一个通信域中各卡的localRankId不重复。
- worldSize(int64_t,计算输入):通信域Size,数据类型支持INT64,取值区间[2, 384]。
- balanceMode(int64_t,计算输入): 均衡规则,传入0时按照rank进行分发,数据类型支持INT64,当前只支持传入0。
- balancedExpertIds(aclTensor*,计算输出):映射后每个token的topK个专家所在物理卡的卡号,Device侧的aclTensor,要求是一个2D的Tensor,shape为(Bs,K),数据类型、数据格式与expertIds保持一致。
- workspaceSize(uint64_t*,出参):返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**,出参):返回op执行器,包含了算子计算流程。
返回值
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错: 161001(ACLNN_ERR_PARAM_NULLPTR): 1. 输入和输出的必选参数Tensor是空指针。 161002(ACLNN_ERR_PARAM_INVALID): 1. 输入和输出的数据类型不在支持的范围内。 561002(ACLNN_ERR_INNER_TILING_ERROR): 1. 输入和输出的shape不在支持的范围内。 2. 参数的取值不在支持的范围。
aclnnMoeEPLBUpdateExpert
参数说明:
- workspace(void*,入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnMoeEPLBUpdateExpertGetWorkspaceSize获取。
- executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
- stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
约束说明
aclnnMoeEPLBUpdateExpert接口必须与aclnnMoeDistributeDispatchV2及aclnnMoeDistributeCombineV2或aclnnMoeDistributeCombineAddRmsNorm接口配套使用,调用顺序为aclnnEPLBUpdateExpert,aclnnMoeDistributeDispatchV2,aclnnMoeDistributeCombineV2或aclnnMoeDistributeCombineAddRmsNorm,具体参考调用示例。
调用接口过程中使用的worldSize、moeExpertNum参数取值所有卡需保持一致,网络中不同层中也需保持一致,且和aclnnMoeDistributeDispatchV2,aclnnMoeDistributeCombineV2或aclnnMoeDistributeCombineAddRmsNorm对应参数也保持一致。
Atlas A3 训练系列产品/Atlas A3 推理系列产品 :该场景下单卡包含双DIE(简称为“晶粒”或“裸片”),因此参数说明里的“本卡”均表示单DIE。参数说明里shape格式说明:
- Bs:表示batch sequence size,即本卡最终输出的token数量,取值范围为0 < Bs ≤ 512。
- K:表示选取topK个专家,取值范围为0 < K ≤ 16同时满足0 < K ≤ moeExpertNum。
- moeExpertNum:表示Moe专家数量,取值范围(0, 512]。
- F: 表示映射表的列数,第一列为各行号对应Moe专家部署的实例个数(值>0),后F-1列为该Moe专家部署的物理卡号,取值范围(1, worldSize + 1]。
调用示例
以
文件准备:
1.新建eplbDemo目录,按照下方指导在eplbDemo下新建aclnnEPLBDemo.cpp,buildEPLB.sh,文件并修改。 2.将eplbDemo项目拷贝到服务器中。 3.安装cann包,并根据下方指导编译运行eplbDemo。编译脚本
#!/bin/bash cann_path="/path/to/cann_env" # 更改cann包环境的路径 g++ "aclnnEPLBDemo.cpp" -o eplbDemo -I"$cann_path/latest/include/" -I"$cann_path/latest/include/aclnnop/" \ -L="$cann_path/latest/lib64/" -lascendcl -lnnopbase -lopapi -lop_common -lpthread -lhccl
编译与运行:
# source cann环境 source /path/to/cann_env/latest/bin/setenv.bash # 编译aclnnEPLBDemo.cpp bash buildEPLB.sh ./eplbDemo
示例代码如下,仅供参考
#include <thread> #include <iostream> #include <string> #include <vector> #include "acl/acl.h" #include "hccl/hccl.h" #include "aclnnop/aclnn_moe_eplb_update_expert.h" #include "aclnnop/aclnn_moe_distribute_dispatch_v2.h" #include "aclnnop/aclnn_moe_distribute_combine_add_rms_norm.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while(0) struct Args { uint32_t rankId; uint32_t epRankId; uint32_t tpRankId; HcclComm hcclEpComm; HcclComm hcclTpComm; aclrtStream eplbStream; aclrtStream dispatchStream; aclrtStream combineStream; aclrtContext context; }; constexpr uint32_t EP_WORLD_SIZE = 8; constexpr uint32_t TP_WORLD_SIZE = 2; constexpr uint32_t DEV_NUM = EP_WORLD_SIZE * TP_WORLD_SIZE; int64_t GetShapeSize(const std::vector<int64_t> &shape) { int64_t shape_size = 1; for (auto i : shape) { shape_size *= i; } return shape_size; } template<typename T> int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr, aclDataType dataType, aclTensor **tensor) { auto size = GetShapeSize(shape) * sizeof(T); auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtMalloc failed. ret: %d\n", ret); return ret); ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtMemcpy failed. ret: %d\n", ret); return ret); std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } *tensor = aclCreateTensor( shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } int LaunchOneProcessEPLBAndDispatchAndCombine(Args &args) { int ret = aclrtSetCurrentContext(args.context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtSetCurrentContext failed, ret %d\n", ret); return ret); char hcomEpName[128] = {0}; ret = HcclGetCommName(args.hcclEpComm, hcomEpName); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] HcclGetEpCommName failed, ret %d\n", ret); return -1); char hcomTpName[128] = {0}; ret = HcclGetCommName(args.hcclTpComm, hcomTpName); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] HcclGetTpCommName failed, ret %d\n", ret); return -1); LOG_PRINT( "[INFO] rank = %d, hcomEpName = %s, hcomTpName = %s, eplbStream = %p, dispatchStream = %p, combineStream = %p, context = %p\n", args.rankId, hcomEpName, hcomTpName, args.eplbStream, args.dispatchStream, args.combineStream, args.context ); int64_t BS = 8; int64_t H = 7168; int64_t K = 3; int64_t F = 2; int64_t expertShardType = 0; int64_t sharedExpertNum = 0; int64_t sharedExpertRankNum = 0; int64_t moeExpertNum = 8; int64_t quantMode = 0; int64_t globalBS = BS * EP_WORLD_SIZE; int64_t balanceMode = 0; int64_t expertTokenNumsType = 1; int64_t outDtype = 0; int64_t commQuantMode = 0; int64_t groupList_type = 1; int64_t localExpertNum; int64_t A; if (args.epRankId < sharedExpertRankNum) { // 共享专家卡 localExpertNum = 1; A = globalBS / sharedExpertRankNum; } else { // Moe专家卡 localExpertNum = moeExpertNum / (EP_WORLD_SIZE - sharedExpertRankNum); A = globalBS * (localExpertNum < K ? localExpertNum : K); } /* 根据当前场景,构造device侧输入输出变量 */ // 声明device侧输入输出变量 void *xDeviceAddr = nullptr; void *expertIdsDeviceAddr = nullptr; void *eplbTableDeviceAddr = nullptr; void *scalesDeviceAddr = nullptr; void *expertScalesDeviceAddr = nullptr; void *expandXDeviceAddr = nullptr; void *dynamicScalesDeviceAddr = nullptr; void *expandIdxDeviceAddr = nullptr; void *expertTokenNumsDeviceAddr = nullptr; void *epRecvCountsDeviceAddr = nullptr; void *tpRecvCountsDeviceAddr = nullptr; void *expandScalesDeviceAddr = nullptr; void *residualXDeviceAddr = nullptr; void *sharedExpertXDeviceAddr = nullptr; void *gammaDeviceAddr = nullptr; void *yOutDeviceAddr = nullptr; void *rstdOutDeviceAddr = nullptr; void *xOutDeviceAddr = nullptr; void *balancedExpertIdsDeviceAddr = nullptr; aclTensor *x = nullptr; aclTensor *expertIds = nullptr; aclTensor *eplbTable = nullptr; aclTensor *scales = nullptr; aclTensor *expertScales = nullptr; aclTensor *expandX = nullptr; aclTensor *dynamicScales = nullptr; aclTensor *expandIdx = nullptr; aclTensor *expertTokenNums = nullptr; aclTensor *epRecvCounts = nullptr; aclTensor *tpRecvCounts = nullptr; aclTensor *expandScales = nullptr; aclTensor *residualX = nullptr; aclTensor *sharedExpertX = nullptr; aclTensor *gamma = nullptr; aclTensor *yOut = nullptr; aclTensor *rstdOut = nullptr; aclTensor *xOut = nullptr; aclTensor *balancedExpertIds = nullptr; // 定义当前场景下各变量维度 std::vector<int64_t> xShape{BS, H}; std::vector<int64_t> expertIdsShape{BS, K}; std::vector<int64_t> eplbTableShape{moeExpertNum, F}; std::vector<int64_t> scalesShape{(sharedExpertRankNum > 0) ? moeExpertNum + 1 : moeExpertNum, H}; std::vector<int64_t> expertScalesShape{BS, K}; std::vector<int64_t> expandXShape{TP_WORLD_SIZE * A, H}; std::vector<int64_t> dynamicScalesShape{TP_WORLD_SIZE * A}; std::vector<int64_t> expandIdxShape{A * 128}; std::vector<int64_t> expertTokenNumsShape{localExpertNum}; std::vector<int64_t> epRecvCountsShape{TP_WORLD_SIZE * localExpertNum * EP_WORLD_SIZE}; std::vector<int64_t> tpRecvCountsShape{TP_WORLD_SIZE * localExpertNum}; std::vector<int64_t> expandScalesShape{A}; std::vector<int64_t> residualXShape{BS, 1, H}; std::vector<int64_t> sharedExpertXShape{BS, 1, H}; std::vector<int64_t> gammaShape{BS, 1, H}; std::vector<int64_t> yOutShape{BS, 1, H}; std::vector<int64_t> rstdOutShape{BS, 1, 1}; std::vector<int64_t> xOutShape{BS, 1, H}; std::vector<int64_t> balancedExpertIdsShape{BS, K}; int64_t xShapeSize = GetShapeSize(xShape); int64_t expertIdsShapeSize = GetShapeSize(expertIdsShape); int64_t scalesShapeSize = GetShapeSize(scalesShape); int64_t expertScalesShapeSize = GetShapeSize(expertScalesShape); int64_t expandXShapeSize = GetShapeSize(expandXShape); int64_t dynamicScalesShapeSize = GetShapeSize(dynamicScalesShape); int64_t expandIdxShapeSize = GetShapeSize(expandIdxShape); int64_t expertTokenNumsShapeSize = GetShapeSize(expertTokenNumsShape); int64_t epRecvCountsShapeSize = GetShapeSize(epRecvCountsShape); int64_t tpRecvCountsShapeSize = GetShapeSize(tpRecvCountsShape); int64_t expandScalesShapeSize = GetShapeSize(expandScalesShape); int64_t residualXShapeSize = GetShapeSize(residualXShape); int64_t sharedExpertXShapeSize = GetShapeSize(sharedExpertXShape); int64_t gammaShapeSize = GetShapeSize(gammaShape); int64_t yOutShapeSize = GetShapeSize(yOutShape); int64_t rstdOutShapeSize = GetShapeSize(rstdOutShape); int64_t xOutShapeSize = GetShapeSize(xOutShape); int64_t balancedExpertIdsShapeSize = GetShapeSize(balancedExpertIdsShape); // 构造host侧变量 std::vector<int16_t> xHostData(xShapeSize, 1); std::vector<int32_t> expertIdsHostData; for (int32_t token_id = 0; token_id < expertIdsShape[0]; token_id++) { // 每个token发给moe专家{0, 1, ... k - 1} for (int32_t k_id = 0; k_id < expertIdsShape[1]; k_id++) { expertIdsHostData.push_back(k_id); } } std::vector<int32_t> eplbTableHostData = {1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7}; std::vector<float> scalesHostData(scalesShapeSize, 0.1); std::vector<float> expertScalesHostData(expertScalesShapeSize, 0.1); std::vector<int16_t> expandXHostData(expandXShapeSize, 0); std::vector<float> dynamicScalesHostData(dynamicScalesShapeSize, 0); std::vector<int32_t> expandIdxHostData(expandIdxShapeSize, 0); std::vector<int64_t> expertTokenNumsHostData(expertTokenNumsShapeSize, 0); std::vector<int32_t> epRecvCountsHostData(epRecvCountsShapeSize, 0); std::vector<int32_t> tpRecvCountsHostData(tpRecvCountsShapeSize, 0); std::vector<float> expandScalesHostData(expandScalesShapeSize, 0); std::vector<int16_t> residualXHostData(residualXShapeSize, 1); std::vector<int16_t> sharedExpertXHostData(sharedExpertXShapeSize, 1); std::vector<int16_t> gammaHostData(gammaShapeSize, 1); std::vector<int16_t> yOutHostData(yOutShapeSize, 0); std::vector<float> rstdOutHostData(rstdOutShapeSize, 0); std::vector<int16_t> xOutHostData(xOutShapeSize, 0); std::vector<int32_t> balancedExpertIdsHostData(balancedExpertIdsShapeSize, 0); // 构造device侧变量 ret = CreateAclTensor(expertIdsHostData, expertIdsShape, &expertIdsDeviceAddr, aclDataType::ACL_INT32, &expertIds); ret = CreateAclTensor(eplbTableHostData, eplbTableShape, &eplbTableDeviceAddr, aclDataType::ACL_INT32, &eplbTable); ret = CreateAclTensor(balancedExpertIdsHostData, balancedExpertIdsShape, &balancedExpertIdsDeviceAddr, aclDataType::ACL_INT32, &balancedExpertIds); ret = CreateAclTensor(xHostData, xShape, &xDeviceAddr, aclDataType::ACL_BF16, &x); CHECK_RET(ret == ACL_SUCCESS, return ret); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(scalesHostData, scalesShape, &scalesDeviceAddr, aclDataType::ACL_FLOAT, &scales); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(expertScalesHostData, expertScalesShape, &expertScalesDeviceAddr, aclDataType::ACL_FLOAT, &expertScales); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(expandXHostData, expandXShape, &expandXDeviceAddr, (quantMode > 0) ? aclDataType::ACL_INT8 : aclDataType::ACL_BF16, &expandX); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(dynamicScalesHostData, dynamicScalesShape, &dynamicScalesDeviceAddr, aclDataType::ACL_FLOAT, &dynamicScales); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(expandIdxHostData, expandIdxShape, &expandIdxDeviceAddr, aclDataType::ACL_INT32, &expandIdx); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(expertTokenNumsHostData, expertTokenNumsShape, &expertTokenNumsDeviceAddr, aclDataType::ACL_INT64, &expertTokenNums); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(epRecvCountsHostData, epRecvCountsShape, &epRecvCountsDeviceAddr, aclDataType::ACL_INT32, &epRecvCounts); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(tpRecvCountsHostData, tpRecvCountsShape, &tpRecvCountsDeviceAddr, aclDataType::ACL_INT32, &tpRecvCounts); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(expandScalesHostData, expandScalesShape, &expandScalesDeviceAddr, aclDataType::ACL_FLOAT, &expandScales); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(residualXHostData, residualXShape, &residualXDeviceAddr, aclDataType::ACL_BF16, &residualX); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(sharedExpertXHostData, sharedExpertXShape, &sharedExpertXDeviceAddr, aclDataType::ACL_BF16, &sharedExpertX); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(gammaHostData, gammaShape, &gammaDeviceAddr, aclDataType::ACL_BF16, &gamma); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(yOutHostData, yOutShape, &yOutDeviceAddr, aclDataType::ACL_BF16, &yOut); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(rstdOutHostData, rstdOutShape, &rstdOutDeviceAddr, aclDataType::ACL_FLOAT, &rstdOut); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(xOutHostData, xOutShape, &xOutDeviceAddr, aclDataType::ACL_BF16, &xOut); CHECK_RET(ret == ACL_SUCCESS, return ret); /* 声明算子执行必需变量 */ uint64_t eplbworkspaceSize = 0; aclOpExecutor *eplbexecutor = nullptr; void *eplbWorkspaceAddr = nullptr; uint64_t dispatchWorkspaceSize = 0; aclOpExecutor *dispatchExecutor = nullptr; void *dispatchWorkspaceAddr = nullptr; uint64_t combineAddRmsNormWorkspaceSize = 0; aclOpExecutor *combineAddRmsNormExecutor = nullptr; void *combineWorkspaceAddr = nullptr; /**************************************** 调用eplb ********************************************/ ret = aclnnMoeEPLBUpdateExpertGetWorkspaceSize(expertIds, eplbTable, args.epRankId, EP_WORLD_SIZE, balanceMode, balancedExpertIds, &eplbworkspaceSize, &eplbexecutor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclnnMoeEPLBUpdateExpertGetWorkspaceSize failed. ret = %d \n", ret); return ret); if (eplbworkspaceSize > 0) { ret = aclrtMalloc(&eplbWorkspaceAddr, eplbworkspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtMalloc workspace failed. ret = %d \n", ret); return ret); } // 调用第二阶段接口 ret = aclnnMoeEPLBUpdateExpert(eplbWorkspaceAddr, eplbworkspaceSize, eplbexecutor, args.eplbStream); ret = aclrtSynchronizeStreamWithTimeout(args.eplbStream, 10000); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclnnMoeEPLBUpdateExpert failed. ret = %d \n", ret); \ return ret); /**************************************** 调用dispatch ********************************************/ ret = aclnnMoeDistributeDispatchV2GetWorkspaceSize(x, balancedExpertIds, (quantMode > 0 ? scales : nullptr), nullptr, expertScales, hcomEpName, EP_WORLD_SIZE, args.epRankId, moeExpertNum, hcomTpName, TP_WORLD_SIZE, args.tpRankId, expertShardType, sharedExpertNum,sharedExpertRankNum, quantMode, globalBS, expertTokenNumsType, nullptr, expandX, dynamicScales, expandIdx, expertTokenNums, epRecvCounts, tpRecvCounts, expandScales, &dispatchWorkspaceSize, &dispatchExecutor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclnnMoeDistributeDispatchV2GetWorkspaceSize failed. ret = %d \n", ret); return ret); if (dispatchWorkspaceSize > 0) { ret = aclrtMalloc(&dispatchWorkspaceAddr, dispatchWorkspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtMalloc workspace failed. ret = %d \n", ret); return ret); } // 调用第二阶段接口 ret = aclnnMoeDistributeDispatchV2(dispatchWorkspaceAddr, dispatchWorkspaceSize, dispatchExecutor, args.dispatchStream); ret = aclrtSynchronizeStreamWithTimeout(args.dispatchStream, 10000); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclnnMoeDistributeDispatchV2 failed. ret = %d \n", ret); \ return ret); /**************************************** 调用combineAddRmsNorm ********************************************/ // 调用第一阶段接口 ret = aclnnMoeDistributeCombineAddRmsNormGetWorkspaceSize( expandX, balancedExpertIds, expandIdx, epRecvCounts, expertScales, residualX, gamma, tpRecvCounts, nullptr, nullptr, nullptr, nullptr, nullptr, sharedExpertX, hcomEpName, EP_WORLD_SIZE, args.epRankId, moeExpertNum, hcomTpName, TP_WORLD_SIZE, args.tpRankId, expertShardType, sharedExpertNum, sharedExpertRankNum, globalBS, outDtype, commQuantMode, groupList_type, nullptr, 1e-6, yOut, rstdOut, xOut, &combineAddRmsNormWorkspaceSize, &combineAddRmsNormExecutor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclnnMoeDistributeCombineAddRmsNormGetWorkspaceSize failed. ret = %d \n", ret); return ret); // 根据第一阶段接口计算出的workspaceSize申请device内存 if (combineAddRmsNormWorkspaceSize > 0) { ret = aclrtMalloc(&combineWorkspaceAddr, combineAddRmsNormWorkspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtMalloc workspace failed. ret = %d \n", ret); return ret); } // 调用第二阶段接口 ret = aclnnMoeDistributeCombineAddRmsNorm(combineWorkspaceAddr, combineAddRmsNormWorkspaceSize, combineAddRmsNormExecutor, args.combineStream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclnnMoeDistributeCombineAddRmsNorm failed. ret = %d \n", ret); return ret); // (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStreamWithTimeout(args.combineStream, 10000); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtSynchronizeStreamWithTimeout failed. ret = %d \n", ret); return ret); LOG_PRINT("[INFO] device_%d aclnnMoeEPLBUpdateExpert, aclnnMoeDistributeDispatchV2 and aclnnMoeDistributeCombineAddRmsNorm \ execute successfully.\n", args.rankId); // 释放device资源 if (dispatchWorkspaceSize > 0) { aclrtFree(dispatchWorkspaceAddr); } if (combineAddRmsNormWorkspaceSize > 0) { aclrtFree(combineWorkspaceAddr); } if (x != nullptr) { aclDestroyTensor(x); } if (expertIds != nullptr) { aclDestroyTensor(expertIds); } if (eplbTable != nullptr) { aclDestroyTensor(eplbTable); } if (scales != nullptr) { aclDestroyTensor(scales); } if (expertScales != nullptr) { aclDestroyTensor(expertScales); } if (expandX != nullptr) { aclDestroyTensor(expandX); } if (dynamicScales != nullptr) { aclDestroyTensor(dynamicScales); } if (expandIdx != nullptr) { aclDestroyTensor(expandIdx); } if (expertTokenNums != nullptr) { aclDestroyTensor(expertTokenNums); } if (epRecvCounts != nullptr) { aclDestroyTensor(epRecvCounts); } if (tpRecvCounts != nullptr) { aclDestroyTensor(tpRecvCounts); } if (expandScales != nullptr) { aclDestroyTensor(expandScales); } if (residualX != nullptr) { aclDestroyTensor(residualX); } if (sharedExpertX != nullptr) { aclDestroyTensor(sharedExpertX); } if (gamma != nullptr) { aclDestroyTensor(gamma); } if (yOut != nullptr) { aclDestroyTensor(yOut); } if (rstdOut != nullptr) { aclDestroyTensor(rstdOut); } if (xOut != nullptr) { aclDestroyTensor(xOut); } if (balancedExpertIds != nullptr) { aclDestroyTensor(balancedExpertIds); } if (xDeviceAddr != nullptr) { aclrtFree(xDeviceAddr); } if (expertIdsDeviceAddr != nullptr) { aclrtFree(expertIdsDeviceAddr); } if (eplbTableDeviceAddr != nullptr) { aclrtFree(eplbTableDeviceAddr); } if (scalesDeviceAddr != nullptr) { aclrtFree(scalesDeviceAddr); } if (expertScalesDeviceAddr != nullptr) { aclrtFree(expertScalesDeviceAddr); } if (expandXDeviceAddr != nullptr) { aclrtFree(expandXDeviceAddr); } if (dynamicScalesDeviceAddr != nullptr) { aclrtFree(dynamicScalesDeviceAddr); } if (expandIdxDeviceAddr != nullptr) { aclrtFree(expandIdxDeviceAddr); } if (expertTokenNumsDeviceAddr != nullptr) { aclrtFree(expertTokenNumsDeviceAddr); } if (epRecvCountsDeviceAddr != nullptr) { aclrtFree(epRecvCountsDeviceAddr); } if (expandScalesDeviceAddr != nullptr) { aclrtFree(expandScalesDeviceAddr); } if (tpRecvCountsDeviceAddr != nullptr) { aclrtFree(tpRecvCountsDeviceAddr); } if (residualXDeviceAddr != nullptr) { aclrtFree(residualXDeviceAddr); } if (sharedExpertXDeviceAddr != nullptr) { aclrtFree(sharedExpertXDeviceAddr); } if (gammaDeviceAddr != nullptr) { aclrtFree(gammaDeviceAddr); } if (yOutDeviceAddr != nullptr) { aclrtFree(yOutDeviceAddr); } if (rstdOutDeviceAddr != nullptr) { aclrtFree(rstdOutDeviceAddr); } if (xOutDeviceAddr != nullptr) { aclrtFree(xOutDeviceAddr); } if (balancedExpertIdsDeviceAddr != nullptr) { aclrtFree(balancedExpertIdsDeviceAddr); } HcclCommDestroy(args.hcclEpComm); HcclCommDestroy(args.hcclTpComm); aclrtDestroyStream(args.eplbStream); aclrtDestroyStream(args.dispatchStream); aclrtDestroyStream(args.combineStream); aclrtDestroyContext(args.context); aclrtResetDevice(args.rankId); return 0; } int main(int argc, char *argv[]) { int ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclInit failed, ret = %d\n", ret); return ret); aclrtStream eplbStream[DEV_NUM]; aclrtStream dispatchStream[DEV_NUM]; aclrtStream combineStream[DEV_NUM]; aclrtContext context[DEV_NUM]; for (uint32_t rankId = 0; rankId < DEV_NUM; rankId++) { ret = aclrtSetDevice(rankId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtSetDevice failed, ret = %d\n", ret); return ret); ret = aclrtCreateContext(&context[rankId], rankId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtCreateContext failed, ret = %d\n", ret); return ret); ret = aclrtCreateStream(&eplbStream[rankId]); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtCreateStream failed, ret = %d\n", ret); return ret); ret = aclrtCreateStream(&dispatchStream[rankId]); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtCreateStream failed, ret = %d\n", ret); return ret); ret = aclrtCreateStream(&combineStream[rankId]); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtCreateStream failed, ret = %d\n", ret); return ret); } int32_t devicesEp[TP_WORLD_SIZE][EP_WORLD_SIZE]; for (int32_t tpId = 0; tpId < TP_WORLD_SIZE; tpId++) { for (int32_t epId = 0; epId < EP_WORLD_SIZE; epId++) { devicesEp[tpId][epId] = epId * TP_WORLD_SIZE + tpId; } } HcclComm commsEp[TP_WORLD_SIZE][EP_WORLD_SIZE]; for (int32_t tpId = 0; tpId < TP_WORLD_SIZE; tpId++) { ret = HcclCommInitAll(EP_WORLD_SIZE, devicesEp[tpId], commsEp[tpId]); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] HcclCommInitAll ep %d failed, ret %d\n", tpId, ret); return ret); } int32_t devicesTp[EP_WORLD_SIZE][TP_WORLD_SIZE]; for (int32_t epId = 0; epId < EP_WORLD_SIZE; epId++) { for (int32_t tpId = 0; tpId < TP_WORLD_SIZE; tpId++) { devicesTp[epId][tpId] = epId * TP_WORLD_SIZE + tpId; } } HcclComm commsTp[EP_WORLD_SIZE][TP_WORLD_SIZE]; for (int32_t epId = 0; epId < EP_WORLD_SIZE; epId++) { ret = HcclCommInitAll(TP_WORLD_SIZE, devicesTp[epId], commsTp[epId]); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] HcclCommInitAll tp %d failed, ret %d\n", epId, ret); return ret); } Args args[DEV_NUM]; // 各线程调用各卡执行算子 std::vector<std::unique_ptr<std::thread>> threads(DEV_NUM); for (uint32_t rankId = 0; rankId < DEV_NUM; rankId++) { uint32_t epRankId = rankId / TP_WORLD_SIZE; uint32_t tpRankId = rankId % TP_WORLD_SIZE; args[rankId].rankId = rankId; args[rankId].epRankId = epRankId; args[rankId].tpRankId = tpRankId; args[rankId].hcclEpComm = commsEp[tpRankId][epRankId]; args[rankId].hcclTpComm = commsTp[epRankId][tpRankId]; args[rankId].eplbStream = eplbStream[rankId]; args[rankId].dispatchStream = dispatchStream[rankId]; args[rankId].combineStream = combineStream[rankId]; args[rankId].context = context[rankId]; threads[rankId].reset(new(std::nothrow) std::thread(&LaunchOneProcessEPLBAndDispatchAndCombine, std::ref(args[rankId]))); } for (uint32_t rankId = 0; rankId < DEV_NUM; rankId++) { threads[rankId]->join(); } aclFinalize(); LOG_PRINT("[INFO] aclFinalize success\n"); return 0; }