昇腾社区首页
中文
注册

aclnnMatmulReduceScatter

支持的产品型号

  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件
  • Atlas A3 训练系列产品/Atlas A3 推理系列产品

说明: 使用该接口时,请确保驱动固件包和CANN包都为配套的8.0.RC2版本或者配套的更高版本,否则将会引发报错,比如BUS ERROR等。

功能说明

  • 算子功能:完成mm + reduce_scatter_base计算。
  • 计算公式output=reducescatter(x1@x2+bias)output=reducescatter(x1@x2+bias)

函数原型

每个算子分为两段式接口,必须先调用“aclnnMatmulReduceScatterGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnMatmulReduceScatter”接口执行计算。

  • aclnnStatus aclnnMatmulReduceScatterGetWorkspaceSize(const aclTensor* x1, const aclTensor* x2, const aclTensor* bias, const char* group, const char* reduceOp, int64_t commTurn, int64_t streamMode, const aclTensor* output, uint64_t* workspaceSize, aclOpExecutor** executor)
  • aclnnStatus aclnnMatmulReduceScatter(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

aclnnMatmulReduceScatterGetWorkspaceSize

  • 参数说明:

    • x1(aclTensor*,计算输入):Device侧的aclTensor,即计算公式中的x1。数据类型支持FLOAT16、BFLOAT16,且与x2的数据类型保持一致。数据格式支持ND。当前版本仅支持两维输入,且仅支持不转置场景
    • x2(aclTensor*,计算输入):Device侧的aclTensor,即计算公式中的x2。数据类型支持FLOAT16、BFLOAT16,且与x1的数据类型保持一致。数据格式支持ND。支持通过转置构造的非连续的Tensor当前版本仅支持两维输入
    • bias(aclTensor*,计算输入):Device侧的aclTensor,即计算公式中的bias。数据类型支持FLOAT16、BFLOAT16。数据格式支持ND。支持传入空指针的场景。当前版本仅支持一维输入,且暂不支持bias输入为非0的场景
    • group(char*,计算输入):Host侧的char,标识通信域的字符串,通信域名称。数据类型支持String。通过Hccl提供的接口“extern HcclResult HcclGetCommName(HcclComm comm, char* commName);”获取,其中commName即为group。
    • reduceOp(char*,计算输入):Host侧的char,reduce操作类型。数据类型支持String。当前版本仅支持“sum”。
    • commTurn(int64_t,计算输入):Host侧的整型,通信数据切分数,即总数据量/单次通信量。数据类型支持INT64。当前版本仅支持输入0。
    • streamMode(int64_t,计算输入):Host侧的整型,AscendCL流模式的枚举,当前只支持枚举值1,数据类型支持INT64。
    • output(aclTensor*,计算输出):Device侧的aclTensor,mm计算+reducescatter通信的结果,即计算公式中的output。数据类型支持FLOAT16、BFLOAT16,且与x1的数据类型保持一致。数据格式支持ND。
    • workspaceSize(uint64_t*,出参):Device侧的整型,返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**,出参):Device侧的aclOpExecutor,返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    161001 (ACLNN_ERR_PARAM_NULLPTR): 1. 传入的x1、x2或output是空指针。
    161002 (ACLNN_ERR_PARAM_INVALID): 1. x1、x2、bias或output的数据类型不符合约束要求。
                                      2. streamMode不在合法范围内。
                                      3. x1、x2或output的shape不符合约束要求。

aclnnMatmulReduceScatter

  • 参数说明:

    • workspace(void*,入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnMatmulReduceScatterGetWorkspaceSize获取。
    • executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

约束说明

  • 输入x1为2维,其shape为(m, k),m须为卡数rank_size的整数倍。
  • 输入x2必须是2维,其shape为(k, n),轴满足mm算子入参要求,k轴相等,且k轴取值范围为[256, 65535)。
  • x1/x2支持的空tensor场景,m和n可以为空,k不可为空,且需满足以下条件:
    • m为空,k不为空,n不为空;
    • m不为空,k不为空,n为空;
    • m为空,k不为空,n为空。
  • x2矩阵支持转置/不转置场景,x1矩阵只支持不转置场景。
  • x1、x2计算输入的数据类型要和output计算输出的数据类型一致。
  • bias暂不支持输入为非0的场景。
  • 输出为2维,其shape为(m/rank_size, n), rank_size为卡数。
  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件:支持2、4、8卡,并且仅支持hccs链路all mesh组网。
  • Atlas A3 训练系列产品/Atlas A3 推理系列产品:支持2、4、8、16、32卡,并且仅支持hccs链路double ring组网。
  • 一个模型中的AllGatherMatmul、MatmulReduceScatter或MatmulAllReduce算子,仅支持相同通信域。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件Atlas A3 训练系列产品/Atlas A3 推理系列产品
    #include <thread>
    #include <iostream>
    #include <vector>
    #include "aclnnop/aclnn_matmul_reduce_scatter.h"
    
    #define CHECK_RET(cond, return_expr) \
        do {                             \
            if (!(cond)) {               \
                return_expr;             \
            }                            \
        } while (0)
    
    #define LOG_PRINT(message, ...)         \
        do {                                \
            printf(message, ##__VA_ARGS__); \
        } while(0)
    
    constexpr int DEV_NUM = 8;
    
    int64_t GetShapeSize(const std::vector<int64_t> &shape)
    {
        int64_t shape_size = 1;
        for (auto i : shape) {
            shape_size *= i;
        }
        return shape_size;
    }
    
    template<typename T>
    int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
        aclDataType dataType, aclTensor **tensor)
    {
        auto size = GetShapeSize(shape) * sizeof(T);
        auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtMalloc failed. ret: %d\n", ret); return ret);
        ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtMemcpy failed. ret: %d\n", ret); return ret);
        std::vector<int64_t> strides(shape.size(), 1);
        for (int64_t i = shape.size() - 2; i >= 0; i--) {
            strides[i] = shape[i +1] * strides[i + 1];
        }
        *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
            shape.data(), shape.size(), *deviceAddr);
        return 0;
    }
    
    struct Args {
        int rankId;
        HcclComm hcclComm;
        aclrtStream stream;
      };
    
    int launchOneThread_MmReduceScatter(Args &args)
    {
        int ret = aclrtSetDevice(args.rankId);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtSetDevice failed. ret = %d \n", ret); return ret);
    
        char hcomName[128] = {0};
        ret = HcclGetCommName(args.hcclComm, hcomName);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] HcclGetCommName failed. ERROR: %d\n", ret); return -1);
        LOG_PRINT("[INFO] rank = %d, hcomName = %s, stream = %p\n", args.rankId, hcomName, args.stream);
        std::vector<int64_t> x1Shape = {1024, 256};
        std::vector<int64_t> x2Shape = {256, 512};
        std::vector<int64_t> biasShape = {512};
        std::vector<int64_t> outShape = {1024 / DEV_NUM, 512};
        void *x1DeviceAddr = nullptr;
        void *x2DeviceAddr = nullptr;
        void *biasDeviceAddr = nullptr;
        void *outDeviceAddr = nullptr;
        aclTensor *x1 = nullptr;
        aclTensor *x2 = nullptr;
        aclTensor *bias = nullptr;
        aclTensor *out = nullptr;
    
        int64_t commTurn = 0;
        int64_t streamMode = 1;
        uint64_t workspaceSize = 0;
        aclOpExecutor *executor = nullptr;
        void *workspaceAddr = nullptr;
    
        long long x1ShapeSize = GetShapeSize(x1Shape);
        long long x2ShapeSize = GetShapeSize(x2Shape);
        long long biasShapeSize = GetShapeSize(biasShape);
        long long outShapeSize = GetShapeSize(outShape);
    
        std::vector<int16_t> x1HostData(x1ShapeSize, 0);
        std::vector<int16_t> x2HostData(x2ShapeSize, 0);
        std::vector<int16_t> biasHostData(biasShapeSize, 0);
        std::vector<int16_t> outHostData(outShapeSize, 0);
        // 创建tensor
        ret = CreateAclTensor(x1HostData, x1Shape, &x1DeviceAddr, aclDataType::ACL_FLOAT16, &x1);
        CHECK_RET(ret == ACL_SUCCESS, return ret);
        ret = CreateAclTensor(x2HostData, x2Shape, &x2DeviceAddr, aclDataType::ACL_FLOAT16, &x2);
        CHECK_RET(ret == ACL_SUCCESS, return ret);
        ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out);
        CHECK_RET(ret == ACL_SUCCESS, return ret);
    
        // 调用第一阶段接口
        ret = aclnnMatmulReduceScatterGetWorkspaceSize(
            x1, x2, bias, hcomName, "sum", commTurn, streamMode, out, &workspaceSize, &executor);
        CHECK_RET(ret == ACL_SUCCESS,
            LOG_PRINT("[ERROR] aclnnMatmulReduceScatterGetWorkspaceSize failed. ret = %d \n", ret); return ret);
        // 根据第一阶段接口计算出的workspaceSize申请device内存
        if (workspaceSize > 0) {
            ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
            CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtMalloc workspace failed. ret = %d \n", ret);  return ret);
        }
        // 调用第二阶段接口
        ret = aclnnMatmulReduceScatter(workspaceAddr, workspaceSize, executor, args.stream);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclnnMatmulReduceScatter failed. ret = %d \n", ret); return    ret);
        // (固定写法)同步等待任务执行结束
        ret = aclrtSynchronizeStreamWithTimeout(args.stream, 10000);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtSynchronizeStreamWithTimeout failed. ret = %d \n",    ret);
            return ret);
        LOG_PRINT("[INFO] device_%d aclnnMatmulReduceScatter execute successfully.\n", args.rankId);
        // 释放device资源,需要根据具体API的接口定义修改
        if (x1 != nullptr) {
            aclDestroyTensor(x1);
        }
        if (x2 != nullptr) {
            aclDestroyTensor(x2);
        }
        if (bias != nullptr) {
            aclDestroyTensor(bias);
        }
        if (out != nullptr) {
            aclDestroyTensor(out);
        }
        if (x1DeviceAddr != nullptr) {
            aclrtFree(x1DeviceAddr);
        }
        if (x2DeviceAddr != nullptr) {
            aclrtFree(x2DeviceAddr);
        }
        if (biasDeviceAddr != nullptr) {
            aclrtFree(biasDeviceAddr);
        }
        if (outDeviceAddr != nullptr) {
            aclrtFree(outDeviceAddr);
        }
        if (workspaceSize > 0) {
            aclrtFree(workspaceAddr);
        }
        ret = aclrtDestroyStream(args.stream);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtDestroyStream failed. ret = %d \n", ret); return ret);
        ret = aclrtResetDevice(args.rankId);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtResetDevice failed. ret = %d \n", ret); return ret);
        return 0;
    }
    
    int main(int argc, char *argv[])
    {
        int ret = aclInit(nullptr);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclInit failed. ret = %d \n", ret); return ret);
        aclrtStream stream[DEV_NUM];
        for (uint32_t rankId = 0; rankId < DEV_NUM; rankId++) {
            ret = aclrtSetDevice(rankId);
            CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtSetDevice failed. ret = %d \n", ret); return ret);
            ret = aclrtCreateStream(&stream[rankId]);
            CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtCreateStream failed. ret = %d \n", ret); return   ret);
        }
        int32_t devices[DEV_NUM];
        for (int i = 0; i < DEV_NUM; i++) {
            devices[i] = i;
        }
        // 初始化集合通信域
        HcclComm comms[DEV_NUM];
        ret = HcclCommInitAll(DEV_NUM, devices, comms);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] HcclCommInitAll failed. ret = %d \n", ret); return ret);
    
        Args args[DEV_NUM];
        // 启动多线程
        std::vector<std::unique_ptr<std::thread>> threads(DEV_NUM);
        for (uint32_t rankId = 0; rankId < DEV_NUM; rankId++) {
            args[rankId].rankId = rankId;
            args[rankId].hcclComm = comms[rankId];
            args[rankId].stream = stream[rankId];
            threads[rankId].reset(new(std::nothrow) std::thread(&launchOneThread_MmReduceScatter, std::ref(args [rankId])));    
        }
        for (uint32_t rankId = 0; rankId < DEV_NUM; rankId++) {
            threads[rankId]->join();
        }
        for (int i = 0; i < DEV_NUM; i++) {
            auto hcclRet = HcclCommDestroy(comms[i]);
            CHECK_RET(hcclRet == HCCL_SUCCESS, LOG_PRINT("[ERROR] HcclCommDestroy failed. ret = %d \n", ret); return    -1);
        }
        aclFinalize();
        return 0;
    }