昇腾社区首页
中文
注册

aclnnMatmulAllReduceV2

支持的产品型号

  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件

说明: 使用该接口时,请确保驱动固件包和CANN包都为配套的8.0.RC2版本或者配套的更高版本,否则将会引发报错,比如BUS ERROR等。

功能说明

  • 算子功能:完成mm + all_reduce_base计算。
  • 计算公式output=allreduce(x1@x2+bias+x3)output = allreduce(x1 @ x2 + bias + x3)

函数原型

每个算子分为两段式接口,必须先调用“aclnnMatmulAllReduceV2GetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnMatmulAllReduceV2”接口执行计算。

  • aclnnStatus aclnnMatmulAllReduceV2GetWorkspaceSize(const aclTensor *x1, const aclTensor *x2, const aclTensor *bias, const aclTensor *x3, const char* group, const char *reduceOp, int64_t commTurn, int64_t streamMode, const aclTensor *output, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnMatmulAllReduceV2(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

aclnnMatmulAllReduceV2GetWorkspaceSize

  • 参数说明:

    • x1(aclTensor*, 计算输入):公式中的输入x1,数据类型支持BFLOAT16、FLOAT16,数据格式支持ND。Device侧的aclTensor,mm左矩阵。当前版本仅支持二维或者三维输入。
    • x2(aclTensor*, 计算输入):公式中的输入x2,数据类型支持BFLOAT16、FLOAT16,数据格式支持ND;当前版本仅支持二维输入。
    • x3(aclTensor*, 计算输入):公式中的输入x3,数据类型支持FLOAT16、BFLOAT16,数据格式支持ND。Device侧的aclTensor,mm计算后的add计算,shape与mm计算后的shape一致。
    • bias(aclTensor*, 计算输入):公式中的输入bias,数据类型支持BFLOAT16、FLOAT16,数据格式支持ND。Device侧的aclTensor,对应计算公式中bias偏移。当前版本仅支持一维输入。
    • group(char*, 计算输入):Host侧标识列组的字符串,通信域名称,数据类型支持String。通过Hccl提供的接口“extern HcclResult HcclGetCommName(HcclComm comm, char* commName);”获取,其中commName即为group。
    • reduceOp(char*, 计算输入):reduce操作类型,数据类型支持String,当前版本仅支持输入"sum"。
    • commTurn(int64_t, 计算输入):Host侧的整型,数据类型支持INT64,通信数据切分数,即总数据量/单次通信量,当前版本仅支持输入0。
    • streamMode(int64_t, 计算输入):Host侧的整型,类型支持INT64,AscendCL流模式的枚举,当前版本仅支持枚举值1。
    • output(aclTensor*, 计算输出):公式中的输出output,数据类型支持FLOAT16、BFLOAT16,且数据类型同x1输入。Device侧的aclTensor,mm计算+all_reduce_base通信的结果。
    • workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor **, 出参):返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    161001 (ACLNN_ERR_PARAM_NULLPTR): 1. 传入的x1、x2或output是空指针。
    161002 (ACLNN_ERR_PARAM_INVALID): 1. x1、x2、bias、x3或output的数据类型不在支持的范围之内。
                                      2. reduceOp、streamMode不在合法范围内。
                                      3. x1、x2、bias、x3或output的shape不符合约束要求。

aclnnMatmulAllReduceV2

  • 参数说明:

    • workspace(void*, 入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnMatmulAllReduceV2GetWorkspaceSize获取。
    • executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参):指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

约束说明

  • 增量场景不使能MC2,全量场景使能MC2。
  • 输入x1可为二维或者三维,其shape为(b, s, k)或者(m, k)。x2必须是二维,其shape为(k, n),轴满足mm算子入参要求,k轴相等。bias若非空,其shape为(n)。
  • b*s、m、k、n的值均不得超过2147483647(INT32_MAX)。
  • 当输入x1的shape为(b, s, k)时,输出output的shape为(b, s, n);当输入x1的shape为(m, k)时,输出output的shape为(m, n)。
  • x1、x2、bias计算输入的数据类型要和output计算输出的数据类型一致,传入的x1、x2、x3或者output不为空指针。
  • 只支持x2矩阵转置/不转置,x1矩阵支持不转置场景。
  • 仅支持hccs链路all mesh组网。
    • Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件:支持1、2、4、8卡。
  • 一个模型中的通算融合MC2算子,仅支持相同通信域。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件
    #include <iostream>
    #include <vector>
    #include <thread>
    #include "aclnnop/aclnn_matmul_all_reduce_v2.h"
    
    int ndev = 8;
    
    #define CHECK_RET(cond, return_expr) \
    do {                               \
        if (!(cond)) {                   \
        return_expr;                   \
        }                                \
    } while (0)
    
    #define LOG_PRINT(message, ...)     \
    do {                              \
        printf(message, ##__VA_ARGS__); \
    } while (0)
    
    int64_t GetShapeSize(const std::vector<int64_t> &shape) {
        int64_t shapeSize = 1;
        for (auto i: shape) {
            shapeSize *= i;
        }
        return shapeSize;
    }
    
    template<typename T>
    int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
                        aclDataType dataType, aclTensor **tensor) {
        auto size = GetShapeSize(shape) * sizeof(T);
        // 调用aclrtMalloc申请device侧内存
        auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
        // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
        ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
        // 计算连续tensor的strides
        std::vector<int64_t> strides(shape.size(), 1);
        for (int64_t i = shape.size() - 2; i >= 0; i--) {
            strides[i] = shape[i + 1] * strides[i + 1];
        }
        // 调用aclCreateTensor接口创建aclTensor
        *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                                shape.data(), shape.size(), *deviceAddr);
        return 0;
    }
    
    struct Args {
        uint32_t rankId;
        HcclComm hcclComm;
        aclrtStream stream;
        aclrtContext context;
    };
    
    int launchOneThreadMatmulAllReduce(Args &args) {
        int ret;
        ret = aclrtSetCurrentContext(args.context);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
        char hcom_name[128];
        ret = HcclGetCommName(args.hcclComm, hcom_name);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] HcclGetCommName failed. ret = %d \n", ret); return -1);
        LOG_PRINT("[INFO] rank %d hcom: %s stream: %p, context : %p\n", args.rankId, hcom_name, args.stream,
                args.context);
    
        std::vector<int64_t> x1Shape = {32, 64};
        std::vector<int64_t> x2Shape = {64, 128};
        std::vector<int64_t> biasShape = {128};
        std::vector<int64_t> x3Shape = {32, 128};
        std::vector<int64_t> outShape = {32, 128};
        void *x1DeviceAddr = nullptr;
        void *x2DeviceAddr = nullptr;
        void *biasDeviceAddr = nullptr;
        void *x3DeviceAddr = nullptr;
        void *outDeviceAddr = nullptr;
        aclTensor *x1 = nullptr;
        aclTensor *x2 = nullptr;
        aclTensor *bias = nullptr;
        aclTensor *x3 = nullptr;
        aclTensor *out = nullptr;
    
        int64_t commTurn = 0;
        int64_t streamMode = 1;
        uint64_t workspaceSize = 0;
        aclOpExecutor *executor;
        void *workspaceAddr = nullptr;
    
        long long x1ShapeSize = GetShapeSize(x1Shape);
        long long x2ShapeSize = GetShapeSize(x2Shape);
        long long biasShapeSize = GetShapeSize(biasShape);
        long long x3ShapeSize = GetShapeSize(x3Shape);
        long long outShapeSize = GetShapeSize(outShape);
        std::vector<int16_t> x1HostData(x1ShapeSize, 1);
        std::vector<int16_t> x2HostData(x2ShapeSize, 1);
        std::vector<int16_t> biasHostData(biasShapeSize, 1);
        std::vector<int16_t> x3HostData(x3ShapeSize, 1);
        std::vector<int16_t> outHostData(outShapeSize, 0);
        // 创建 tensor
        ret = CreateAclTensor(x1HostData, x1Shape, &x1DeviceAddr, aclDataType::ACL_FLOAT16, &x1);
        CHECK_RET(ret == ACL_SUCCESS, return ret);
        ret = CreateAclTensor(x2HostData, x2Shape, &x2DeviceAddr, aclDataType::ACL_FLOAT16, &x2);
        CHECK_RET(ret == ACL_SUCCESS, return ret);
        ret = CreateAclTensor(biasHostData, biasShape, &biasDeviceAddr, aclDataType::ACL_FLOAT16, &bias);
        CHECK_RET(ret == ACL_SUCCESS, return ret);
        ret = CreateAclTensor(x3HostData, x3Shape, &x3DeviceAddr, aclDataType::ACL_FLOAT16, &x3);
        CHECK_RET(ret == ACL_SUCCESS, return ret);
        ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out);
        CHECK_RET(ret == ACL_SUCCESS, return ret);
        // 调用第一段接口, x3位置传入out
        ret = aclnnMatmulAllReduceV2GetWorkspaceSize(x1, x2, bias, x3, hcom_name, "sum", commTurn, streamMode, out, &   workspaceSize, &executor);
    
        CHECK_RET(ret == ACL_SUCCESS,
                LOG_PRINT("aclnnMatmulAllReduceV2GetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
        // 根据第一段接口计算出的workspaceSize申请device内存
        if (workspaceSize > 0) {
            ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
            CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
        }
        // 调用第二段接口
        ret = aclnnMatmulAllReduceV2(workspaceAddr, workspaceSize, executor, args.stream);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMatmulAllReduceV2 failed. ERROR: %d\n", ret); return ret);
        //(固定写法)同步等待任务执行结束
        ret = aclrtSynchronizeStreamWithTimeout(args.stream, 10000);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
        LOG_PRINT("device%d aclnnMatmulAllReduceV2 execute success \n", args.rankId);
        // 释放device资源,需要根据具体API的接口定义修改
        if (x1 != nullptr) {
            aclDestroyTensor(x1);
        }
        if (x2 != nullptr) {
            aclDestroyTensor(x2);
        }
        if (bias != nullptr) {
            aclDestroyTensor(bias);
        }
        if (x3 != nullptr) {
            aclDestroyTensor(x3);
        }
        if (out != nullptr) {
            aclDestroyTensor(out);
        }
        if (x1DeviceAddr != nullptr) {
            aclrtFree(x1DeviceAddr);
        }
        if (x2DeviceAddr != nullptr) {
            aclrtFree(x2DeviceAddr);
        }
        if (biasDeviceAddr != nullptr) {
            aclrtFree(biasDeviceAddr);
        }
        if (x3DeviceAddr != nullptr) {
            aclrtFree(x3DeviceAddr);
        }
        if (outDeviceAddr != nullptr) {
            aclrtFree(outDeviceAddr);
        }
        if (workspaceSize > 0) {
            aclrtFree(workspaceAddr);
        }
        aclrtDestroyStream(args.stream);
        HcclCommDestroy(args.hcclComm);
        aclrtDestroyContext(args.context);
        aclrtResetDevice(args.rankId);
        return 0;
    }
    
    int main(int argc, char *argv[]) {
        int ret;
        int32_t devices[ndev];
        for (int i = 0; i < ndev; i++) {
            devices[i] = i;
        }
        HcclComm comms[128];
        ret = aclInit(nullptr);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
        // 初始化集合通信域
        for (int i = 0; i < ndev; i++) {
            ret = aclrtSetDevice(devices[i]);
            CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
        }
        ret = HcclCommInitAll(ndev, devices, comms);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("HcclCommInitAll failed. ERROR: %d\n", ret); return ret);
        Args args[ndev];
        aclrtStream stream[ndev];
        aclrtContext context[ndev];
        for (uint32_t rankId = 0; rankId < ndev; rankId++) {
            ret = aclrtSetDevice(rankId);
            CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
            ret = aclrtCreateContext(&context[rankId], rankId);
            CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
            ret = aclrtCreateStream(&stream[rankId]);
            CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
        }
        // 启动多线程
        std::vector<std::unique_ptr<std::thread>> threads(ndev);
        for (uint32_t rankId = 0; rankId < ndev; rankId++) {
            args[rankId].rankId = rankId;
            args[rankId].hcclComm = comms[rankId];
            args[rankId].stream = stream[rankId];
            args[rankId].context = context[rankId];
            threads[rankId].reset(new(std::nothrow) std::thread(&launchOneThreadMatmulAllReduce, std::ref(args  [rankId])));
        }
        for (uint32_t rankId = 0; rankId < ndev; rankId++) {
            threads[rankId]->join();
        }
        aclFinalize();
        return 0;
    }