昇腾社区首页
中文
注册

aclnnGroupedMatMulAlltoAllv

支持的产品型号

  • Atlas A3 训练系列产品/Atlas A3 推理系列产品

功能说明

  • 算子功能:完成路由专家GroupedMatMul、Unpermute、AlltoAllv融合并实现与共享专家MatMul并行融合,先计算后通信
  • 计算公式
    • 路由专家:

      gmmY=gmmX×gmmWeightunpermuteOut=Unpermute(gmmY)y=AlltoAllv(unpermuteOut)gmmY = gmmX \times gmmWeight \\ unpermuteOut = Unpermute(gmmY) \\ y = AlltoAllv(unpermuteOut)
    • 共享专家:

      mmY=mmX×mmWeightmmY = mmX \times mmWeight

函数原型

每个算子分为两段式接口,必须先调用“aclnnGroupedMatMulAlltoAllvGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnGroupedMatMulAlltoAllv”接口执行计算。

  • aclnnStatus aclnnGroupedMatMulAlltoAllvGetWorkspaceSize(const aclTensor* gmmX, const aclTensor* gmmWeight, const aclTensor* sendCountsTensorOptional, const aclTensor* recvCountsTensorOptional, const aclTensor* mmXOptional, const aclTensor* mmWeightOptional, const char* group, int64_t epWorldSize, const aclIntArray* sendCounts, const aclIntArray* recvCounts, bool transGmmWeight, bool transMmWeight, aclTensor* y, aclTensor* mmYOptional, uint64_t* workspaceSize, aclOpExecutor** executor)
  • aclnnStatus aclnnGroupedMatMulAlltoAllv(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)

aclnnGroupedMatMulAlltoAllvGetWorkspaceSize

  • 参数说明:

    • gmmX(aclTensor*,计算输入):该输入进行AlltoAllv通信,通信后结果作为GroupedMatMul计算的左矩阵。数据类型支持FLOAT16、BFLOAT16,支持2维,shape为(A, H1),数据格式支持ND。
    • gmmWeight(aclTensor*,计算输入):GroupedMatMul计算的右矩阵。数据类型与gmmX保持一致,支持3维,shape为(e, H1, N1),数据格式支持ND。
    • sendCountsTensorOptional(aclTensor*,计算输入):可选输入,数据类型支持INT32、INT64,shape为(e * epWorldSize,),数据格式支持ND。当前版本暂不支持,传nullptr
    • recvCountsTensorOptional(aclTensor*,计算输入):可选输入,数据类型支持INT32、INT64,shape为(e * epWorldSize,),数据格式支持ND。当前版本暂不支持,传nullptr
    • mmXOptional(aclTensor*,计算输入):可选输入,共享专家MatMul计算中的左矩阵。当需要融合共享专家矩阵计算时,该参数必选,支持2维,shape为(BS, H2)。
    • mmWeightOptional(aclTensor*,计算输入):可选输入,共享专家MatMul计算中的右矩阵。当需要融合共享专家矩阵计算时,该参数必选,支持2维,shape为(H2, N2)。
    • group(char*,计算输入):专家并行的通信域名,字符串长度要求(0, 128)。
    • epWorldSize(int64_t,计算输入):ep通信域size,取值支持8、16、32、64。
    • sendCounts(aclIntArray*,计算输入):表示发送给其他卡的token数,数据类型支持INT64,取值大小为e * epWorldSize,最大为256。
    • recvCounts(aclIntArray*,计算输入):表示接收其他卡的token数,数据类型支持INT64,取值大小为e * epWorldSize,最大为256。
    • transGmmWeight(bool, 计算输入):gmmWeight是否需要转置,true表示需要转置,false表示不转置。
    • transMmWeight(bool, 计算输入):共享专家mmWeightOptional是否需要转置,true表示需要转置,false表示不转置。
    • y(aclTensor*, 计算输出):表示最终计算结果,数据类型与输入gmmX保持一致,支持2维,shape为(BSK, N1)。
    • mmYOptional(aclTensor*, 计算输出):共享专家MatMul的输出,数据类型与mmXOptional保持一致,支持2维,shape为(BS, N2)。仅当传入mmXOptional与mmWeightOptional才输出。
    • workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    161001(ACLNN_ERR_PARAM_NULLPTR):1. 传入参数要求是必选输入、输出或者必选属性,但实际传入了空指针。
    161002(ACLNN_ERR_PARAM_INVALID):1. gmmX、gmmWeight、sendCountsTensorOptional、recvCountsTensorOptional、mmXOptional、mmWeightOptional、group、epWorldSize、sendCounts、recvCounts的数据类型、数据格式或者维度不在支持的范围内。

aclnnGroupedMatMulAlltoAllv

  • 参数说明:

    • workspace(void*, 入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnGroupedMatMulAlltoAllvGetWorkspaceSize获取。
    • executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参):指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

约束说明

  • 参数说明里shape使用的变量:
    • BSK:本卡接收的token数,是recvCounts参数累加之和,取值范围(0, 52428800)。
    • H1:表示路由专家hidden size隐藏层大小,取值范围(0, 65536)。
    • H2:表示共享专家hidden size隐藏层大小,取值范围(0, 12288]。
    • e:表示单卡上专家个数,e<=32,e * epWorldSize最大支持256。
    • N1:表示路由专家的head_num,取值范围(0, 65536)。
    • N2:表示共享专家的head_num,取值范围(0, 65536)。
    • BS:batch sequence size。
    • K:表示选取TopK个专家,K的范围[2, 8]。
    • A:本卡发送的token数,是sendCounts参数累加之和。
    • ep通信域内所有卡的 A 参数的累加和等于所有卡上的 BSK 参数的累加和。
  • 单卡通信量要求在2MB到100MB范围内。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

  • Atlas A3 训练系列产品/Atlas A3 推理系列产品
    #include <thread>
    #include <iostream>
    #include <string>
    #include <vector>
    #include "acl/acl.h"
    #include "hccl/hccl.h"
    #include "aclnnop/aclnn_grouped_mat_mul_allto_allv.h"
    
    #define CHECK_RET(cond, return_expr) \
        do {                             \
            if (!(cond)) {               \
                return_expr;             \
            }                            \
        } while (0)
    
    #define LOG_PRINT(message, ...)          \
        do {                                 \
            printf(message, ##__VA_ARGS__);  \
        } while (0)
    
    int64_t GetShapeSize(const std::vector<int64_t> &shape)
    {
        int64_t shape_size = 1;
        for (auto i : shape) {
            shape_size *= i;
        }
        return shape_size;
    }
    
    template <typename T>
    int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
        aclDataType dataType, aclTensor **tensor)
    {
        auto size = GetShapeSize(shape) * sizeof(T);
        auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtMalloc failed. ret: %d\n", ret); return ret);
        ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtMemcpy failed. ret: %d\n", ret); return ret);
        std::vector<int64_t> strides(shape.size(), 1);
        for (int64_t i = shape.size() - 2; i >= 0; i--) {
            strides[i] = shape[i + 1] * strides[i + 1];
        }
        *tensor = aclCreateTensor(shape.data(),
            shape.size(),
            dataType,
            strides.data(),
            0,
            aclFormat::ACL_FORMAT_ND,
            shape.data(),
            shape.size(),
            *deviceAddr);
        return 0;
    }
    
    struct Args {
        int rankId;
        HcclComm hcclComm;
        aclrtStream stream;
        aclrtContext context;
    };
    
    // shape 基本信息
    constexpr int64_t EP_WORLD_SIZE = 8;
    constexpr int64_t BS = 4096;
    constexpr int64_t K = 2;
    constexpr int64_t H = 7168;
    constexpr int64_t e = 4;
    constexpr int64_t N1 = 4096;
    constexpr int64_t N2 = 4096;
    constexpr int64_t A = BS * K;
    
    std::vector<int16_t> pGmmyData(BS *K *N1, 0);
    std::vector<int16_t> pmmYData(BS *N2, 0);
    
    int LaunchOneThreadAlltoAllvGmm(Args &args)
    {
        int ret = aclrtSetCurrentContext(args.context);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtSetCurrentContext failed. ret: %d\n", ret); return ret);
        char hcomName[128] = {0};
        ret = HcclGetCommName(args.hcclComm, hcomName);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] HcclGetEpCommName failed. ret: %d\n", ret); return -1);
    
        std::vector<int64_t> gmmXShape = {A, H};
        std::vector<int64_t> gmmWShape = {e, H, N1};
        std::vector<int64_t> gmmYShape = {BS * K, N1};
        std::vector<int64_t> permuteShape = {A, H};
        std::vector<int64_t> mmXShape = {BS, H};
        std::vector<int64_t> mmWShape = {H, N2};
        std::vector<int64_t> mmYShape = {BS, N2};
    
        std::vector<int64_t> sendCountsShape = {EP_WORLD_SIZE * e};
        std::vector<int64_t> recvCountsShape = {EP_WORLD_SIZE * e};
    
        std::vector<int64_t> sendCountsList(EP_WORLD_SIZE * e, A / (EP_WORLD_SIZE * e));
        std::vector<int64_t> recvCountsList(EP_WORLD_SIZE * e, A / (EP_WORLD_SIZE * e));
    
        void *gmmXDeviceAddr = nullptr;
        void *gmmWDeviceAddr = nullptr;
        void *gmmYDeviceAddr = nullptr;
        void *permuteDeviceAddr = nullptr;
        void *mmXDeviceAddr = nullptr;
        void *mmWDeviceAddr = nullptr;
        void *mmYDeviceAddr = nullptr;
    
        aclTensor *gmmX = nullptr;
        aclTensor *gmmW = nullptr;
        aclTensor *gmmY = nullptr;
    
        aclTensor *mmX = nullptr;
        aclTensor *mmW = nullptr;
        aclTensor *mmY = nullptr;
    
        aclTensor *sendCountsTensor = nullptr;
        aclTensor *recvCountsTensor = nullptr;
    
        uint64_t workspaceSize = 0;
        aclOpExecutor *executor = nullptr;
        void *workspaceAddr = nullptr;
    
        long long gmmXShapeSize = GetShapeSize(gmmXShape);
        long long gmmWShapeSize = GetShapeSize(gmmWShape);
        long long gmmYShapeSize = GetShapeSize(gmmYShape);
    
        long long mmXShapeSize = GetShapeSize(mmXShape);
        long long mmWShapeSize = GetShapeSize(mmWShape);
        long long mmYShapeSize = GetShapeSize(mmYShape);
    
        std::vector<uint16_t> gmmXHostData(gmmXShapeSize, (args.rankId + 1) * 1024);  // BF16, FP16
        std::vector<uint16_t> gmmWHostData(gmmWShapeSize, (args.rankId + 1) * 512);
        std::vector<uint16_t> gmmYHostData(gmmYShapeSize, 65535);
    
        std::vector<uint16_t> mmXHostData(mmXShapeSize, (args.rankId + 1) * 1024);  // BF16, FP16
        std::vector<uint16_t> mmWHostData(mmWShapeSize, (args.rankId + 1) * 512);
        std::vector<uint16_t> mmYHostData(mmYShapeSize, 0);
    
        ret = CreateAclTensor(gmmXHostData, gmmXShape, &gmmXDeviceAddr, aclDataType::ACL_FLOAT16, &gmmX);
        CHECK_RET(ret == ACL_SUCCESS, return ret);
        ret = CreateAclTensor(gmmWHostData, gmmWShape, &gmmWDeviceAddr, aclDataType::ACL_FLOAT16, &gmmW);
        CHECK_RET(ret == ACL_SUCCESS, return ret);
        ret = CreateAclTensor(gmmYHostData, gmmYShape, &gmmYDeviceAddr, aclDataType::ACL_FLOAT16, &gmmY);
        CHECK_RET(ret == ACL_SUCCESS, return ret);
        ret = CreateAclTensor(mmXHostData, mmXShape, &mmXDeviceAddr, aclDataType::ACL_FLOAT16, &mmX);
        CHECK_RET(ret == ACL_SUCCESS, return ret);
        ret = CreateAclTensor(mmWHostData, mmWShape, &mmWDeviceAddr, aclDataType::ACL_FLOAT16, &mmW);
        CHECK_RET(ret == ACL_SUCCESS, return ret);
        ret = CreateAclTensor(mmYHostData, mmYShape, &mmYDeviceAddr, aclDataType::ACL_FLOAT16, &mmY);
        CHECK_RET(ret == ACL_SUCCESS, return ret);
    
        aclIntArray *sendCounts = aclCreateIntArray(sendCountsList.data(), sendCountsList.size());
        aclIntArray *recvCounts = aclCreateIntArray(recvCountsList.data(), recvCountsList.size());
    
        // 调用第一阶段接口
        ret = aclnnGroupedMatMulAlltoAllvGetWorkspaceSize(gmmX,
            gmmW,
            sendCountsTensor,
            recvCountsTensor,
            mmX,
            mmW,
            hcomName,
            EP_WORLD_SIZE,
            sendCounts,
            recvCounts,
            false,
            false,
            gmmY,
            mmY,
            &workspaceSize,
            &executor);
        CHECK_RET(
            ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclnnGroupedMatMulAlltoAllvGetWorkspaceSize failed. ret = %d \n", ret);
            return ret);
    
        if (workspaceSize > 0) {
            ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
            CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtMalloc workspace failed. ret = %d \n", ret); return ret);
        }
        // 调用第二阶段接口
        ret = aclnnGroupedMatMulAlltoAllv(workspaceAddr, workspaceSize, executor, args.stream);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclnnGroupedMatMulAlltoAllv failed. ret = %d \n", ret);
                return ret);
        // (固定写法)同步等待任务执行结束
        ret = aclrtSynchronizeStreamWithTimeout(args.stream, 10000000);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtSynchronizeStreamWithTimeout failed. ret = %d \n", ret); 
                return ret);
        // 释放device资源,需要根据具体API的接口定义修改
        if (args.rankId == 0) {
            size_t size = A * N1 * sizeof(int16_t);
            aclrtMemcpy(pGmmyData.data(), size, gmmYDeviceAddr, size, ACL_MEMCPY_DEVICE_TO_HOST);
        }
        if (gmmX != nullptr) {
            aclDestroyTensor(gmmX);
        }
        if (gmmW != nullptr) {
            aclDestroyTensor(gmmW);
        }
        if (gmmY != nullptr) {
            aclDestroyTensor(gmmY);
        }
        if (mmX != nullptr) {
            aclDestroyTensor(mmX);
        }
        if (mmW != nullptr) {
            aclDestroyTensor(mmW);
        }
        if (mmY != nullptr) {
            aclDestroyTensor(mmY);
        }
        if (gmmXDeviceAddr != nullptr) {
            aclrtFree(gmmXDeviceAddr);
        }
        if (gmmWDeviceAddr != nullptr) {
            aclrtFree(gmmWDeviceAddr);
        }
        if (gmmYDeviceAddr != nullptr) {
            aclrtFree(gmmYDeviceAddr);
        }
        if (mmXDeviceAddr != nullptr) {
            aclrtFree(mmXDeviceAddr);
        }
        if (mmWDeviceAddr != nullptr) {
            aclrtFree(mmWDeviceAddr);
        }
        if (mmYDeviceAddr != nullptr) {
            aclrtFree(mmYDeviceAddr);
        }
        if (workspaceSize > 0) {
            aclrtFree(workspaceAddr);
        }
        HcclCommDestroy(args.hcclComm);
        aclrtDestroyStream(args.stream);
        aclrtDestroyContext(args.context);
        aclrtResetDevice(args.rankId);
        return 0;
    }
    
    int main(int argc, char *argv[]) 
    {
        int ret = aclInit(nullptr);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclInit failed. ret = %d \n", ret); return ret);
        aclrtStream stream[EP_WORLD_SIZE];
        aclrtContext context[EP_WORLD_SIZE];
        for (uint32_t rankId = 0; rankId < EP_WORLD_SIZE; rankId++) {
            ret = aclrtSetDevice(rankId);
            CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtSetDevice failed. ret = %d \n", ret); return ret);
            ret = aclrtCreateContext(&context[rankId], rankId);
            CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtCreateContext failed. ret = %d \n", ret); return ret);
            ret = aclrtCreateStream(&stream[rankId]);
            CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtCreateStream failed. ret = %d \n", ret); return ret);
        }
    
        int32_t devices[EP_WORLD_SIZE];
        for (int i = 0; i < EP_WORLD_SIZE; i++) {
            devices[i] = i;
        }
        //初始化集合通信域
        HcclComm comms[EP_WORLD_SIZE];
        ret = HcclCommInitAll(EP_WORLD_SIZE, devices, comms);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] HcclCommInitAll failed. ret = %d \n", ret); return ret);
    
        Args args[EP_WORLD_SIZE];
        // 启动多线程
        std::vector<std::unique_ptr<std::thread>> threads(EP_WORLD_SIZE);
        for (uint32_t rankId = 0; rankId < EP_WORLD_SIZE; rankId++) {
            args[rankId].rankId = rankId;
            args[rankId].hcclComm = comms[rankId];
            args[rankId].stream = stream[rankId];
            args[rankId].context = context[rankId];
            threads[rankId].reset(new std::thread(&LaunchOneThreadAlltoAllvGmm, std::ref(args[rankId])));
        }
        for (uint32_t rankId = 0; rankId < EP_WORLD_SIZE; rankId++) {
            threads[rankId]->join();
        }
        aclFinalize();
        return 0;
    }