aclnnAllGatherMatmul
支持的产品型号
Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件 。Atlas A3 训练系列产品/Atlas A3 推理系列产品 。
说明: 使用该接口时,请确保驱动固件包和CANN包都为配套的8.0.RC2版本或者配套的更高版本,否则将会引发报错,比如BUS ERROR等。
功能说明
- 算子功能:完成all_gather通信+matmul融合。
- 计算公式:
函数原型
每个算子分为两段式接口,必须先调用“aclnnAllGatherMatmulGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnAllGatherMatmul”接口执行计算。
aclnnStatus aclnnAllGatherMatmulGetWorkspaceSize(const aclTensor *x1, const aclTensor *x2, const aclTensor *bias, const char *group, int64_t gatherIndex, int64_t commTurn, int64_t streamMode, const aclTensor *output, const aclTensor *gatherOut, uint64_t *workspaceSize, aclOpExecutor **executor)
aclnnStatus aclnnAllGatherMatmul(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
aclnnAllGatherMatmulGetWorkspaceSize
参数说明:
- x1(aclTensor*,计算输入):Device侧的aclTensor,即计算公式中的x1。数据类型支持FLOAT16、BFLOAT16,且与x2的数据类型保持一致。数据格式支持ND。当前版本仅支持两维输入,且仅支持不转置场景。
- x2(aclTensor*,计算输入):Device侧的aclTensor,即计算公式中的x2。数据类型支持FLOAT16、BFLOAT16,且与x1的数据类型保持一致。数据格式支持ND。支持通过转置构造的非连续的Tensor。当前版本仅支持两维输入。
- bias(aclTensor*,计算输入):Device侧的aclTensor,即计算公式中的bias。数据类型支持FLOAT16、BFLOAT16。数据格式支持ND。支持传入空指针的场景。当前版本仅支持一维输入,且暂不支持bias输入为非0的场景。
- group(char*,计算输入):Host侧标识通信域的字符串,通信域名称。数据类型支持String。通过Hccl提供的接口“extern HcclResult HcclGetCommName(HcclComm comm, char* commName);”获取,其中commName即为group。
- gatherIndex(int64_t,计算输入):Host侧的整型,标识gather目标,0表示目标为x1,1表示目标为x2。数据类型支持INT64。当前版本仅支持输入0。
- commTurn(int64_t,计算输入):Host侧的整型,通信数据切分数,即总数据量/单次通信量。数据类型支持INT64。当前版本仅支持输入0。
- streamMode(int64_t,计算输入):Host侧的整型,AscendCL流模式的枚举,当前只支持枚举值1,类型支持INT64。
- output(aclTensor*,计算输出):Device侧的aclTensor,all_gather通信+mm计算的结果,即计算公式中的output。数据类型支持FLOAT16、BFLOAT16,且与x1的数据类型保持一致。数据格式支持ND。
- gatherOut(aclTensor*,计算输出):Device侧的aclTensor,仅输出all_gather通信后的结果,即计算公式中的gatherOut。数据类型支持FLOAT16、BFLOAT16,且与x1的数据类型保持一致。数据格式支持ND。
- workspaceSize(uint64_t*,出参):返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor **,出参):返回op执行器,包含了算子计算流程。
返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错: 161001 (ACLNN_ERR_PARAM_NULLPTR): 1. 传入的x1、x2或output是空指针。 161002 (ACLNN_ERR_PARAM_INVALID): 1. x1、x2、bias或output的数据类型不在支持的范围之内。 2. streamMode不在合法范围内。 3. x1是空tensor。
aclnnAllGatherMatmul
参数说明:
- workspace(void*,入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnAllGatherMatmulGetWorkspaceSize获取。
- executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
- stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
约束说明
- 输入x1为2维,其shape为(m, k)。x2必须是2维,其shape为(k, n),轴满足mm算子入参要求,k轴相等,且k轴取值范围为[256, 65535)。bias暂不支持输入为非0的场景。
- x1/x2支持的空tensor场景,m和n可以为空,k不可为空,且需要满足以下条件:
- m为空,k不为空,n不为空;
- m不为空,k不为空,n为空;
- m为空,k不为空,n为空。
- x1、x2计算输入的数据类型要和output计算输出的数据类型一致。
- x2矩阵支持转置/不转置场景,x1矩阵只支持不转置场景。
- 输出为2维,其shape为(m*rank_size, n), rank_size为卡数。
Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件 :支持2、4、8卡,并且仅支持hccs链路all mesh组网。Atlas A3 训练系列产品/Atlas A3 推理系列产品 :支持2、4、8、16、32卡,并且仅支持hccs链路double ring组网。- 一个模型中的AllGatherMatmul、MatmulReduceScatter或MatmulAllReduce算子,仅支持相同通信域。
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件 、Atlas A3 训练系列产品/Atlas A3 推理系列产品 :#include <thread> #include <iostream> #include <vector> #include "aclnnop/aclnn_all_gather_matmul.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while(0) constexpr int DEV_NUM = 8; int64_t GetShapeSize(const std::vector<int64_t> &shape) { int64_t shape_size = 1; for (auto i : shape) { shape_size *= i; } return shape_size; } template<typename T> int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr, aclDataType dataType, aclTensor **tensor) { auto size = GetShapeSize(shape) * sizeof(T); auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtMalloc failed. ret: %d\n", ret); return ret); ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtMemcpy failed. ret: %d\n", ret); return ret); std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i +1] * strides[i + 1]; } *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } struct Args { int rankId; HcclComm hcclComm; aclrtStream stream; }; int launchOneThread_AllGatherMm(Args &args) { int ret = aclrtSetDevice(args.rankId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtSetDevice failed. ret = %d \n", ret); return ret); char hcomName[128] = {0}; ret = HcclGetCommName(args.hcclComm, hcomName); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] HcclGetCommName failed. ret: %d\n", ret); return -1); LOG_PRINT("[INFO] rank = %d, hcomName = %s, stream = %p\n", args.rankId, hcomName, args.stream); std::vector<int64_t> x1Shape = {128, 256}; std::vector<int64_t> x2Shape = {256, 512}; std::vector<int64_t> biasShape = {512}; std::vector<int64_t> outShape = {128 * DEV_NUM, 512}; std::vector<int64_t> gatherOutShape = {128 * DEV_NUM, 256}; void *x1DeviceAddr = nullptr; void *x2DeviceAddr = nullptr; void *biasDeviceAddr = nullptr; void *outDeviceAddr = nullptr; void *gatherOutDeviceAddr = nullptr; aclTensor *x1 = nullptr; aclTensor *x2 = nullptr; aclTensor *bias = nullptr; aclTensor *out = nullptr; aclTensor *gatherOut = nullptr; int64_t gatherIndex = 0; int64_t commTurn = 0; int64_t streamMode = 1; uint64_t workspaceSize = 0; aclOpExecutor *executor = nullptr; void *workspaceAddr = nullptr; long long x1ShapeSize = GetShapeSize(x1Shape); long long x2ShapeSize = GetShapeSize(x2Shape); long long biasShapeSize = GetShapeSize(biasShape); long long outShapeSize = GetShapeSize(outShape); long long gatherOutShapeSize = GetShapeSize(gatherOutShape); std::vector<int16_t> x1HostData(x1ShapeSize, 0); std::vector<int16_t> x2HostData(x2ShapeSize, 0); std::vector<int16_t> biasHostData(biasShapeSize, 0); std::vector<int16_t> outHostData(outShapeSize, 0); std::vector<int16_t> gatherOutHostData(gatherOutShapeSize, 0); ret = CreateAclTensor(x1HostData, x1Shape, &x1DeviceAddr, aclDataType::ACL_FLOAT16, &x1); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(x2HostData, x2Shape, &x2DeviceAddr, aclDataType::ACL_FLOAT16, &x2); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(gatherOutHostData, gatherOutShape, &gatherOutDeviceAddr, aclDataType::ACL_FLOAT16, &gatherOut); CHECK_RET(ret == ACL_SUCCESS, return ret); // 调用第一阶段接口 ret = aclnnAllGatherMatmulGetWorkspaceSize( x1, x2, bias, hcomName, gatherIndex, commTurn, streamMode, out, gatherOut, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclnnAllGatherMatmulGetWorkspaceSize failed. ret = %d \n", ret); return ret); // 根据第一阶段接口计算出的workspaceSize申请device内存 if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtMalloc workspace failed. ret = %d \n", ret); return ret); } // 调用第二阶段接口 ret = aclnnAllGatherMatmul(workspaceAddr, workspaceSize, executor, args.stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclnnAllGatherMatmul failed. ret = %d \n", ret); return ret); // (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStreamWithTimeout(args.stream, 10000); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtSynchronizeStreamWithTimeout failed. ret = %d \n", ret); return ret); LOG_PRINT("[INFO] device_%d aclnnAllGatherMatmul execute successfully.\n", args.rankId); // 释放device资源,需要根据具体API的接口定义修改 if (x1 != nullptr) { aclDestroyTensor(x1); } if (x2 != nullptr) { aclDestroyTensor(x2); } if (bias != nullptr) { aclDestroyTensor(bias); } if (out != nullptr) { aclDestroyTensor(out); } if (gatherOut != nullptr) { aclDestroyTensor(gatherOut); } if (x1DeviceAddr != nullptr) { aclrtFree(x1DeviceAddr); } if (x2DeviceAddr != nullptr) { aclrtFree(x2DeviceAddr); } if (biasDeviceAddr != nullptr) { aclrtFree(biasDeviceAddr); } if (outDeviceAddr != nullptr) { aclrtFree(outDeviceAddr); } if (gatherOutDeviceAddr != nullptr) { aclrtFree(gatherOutDeviceAddr); } if (workspaceSize > 0) { aclrtFree(workspaceAddr); } ret = aclrtDestroyStream(args.stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtDestroyStream failed. ret = %d \n", ret); return ret); ret = aclrtResetDevice(args.rankId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtResetDevice failed. ret = %d \n", ret); return ret); return 0; } int main(int argc, char *argv[]) { int ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclInit failed. ret = %d \n", ret); return ret); aclrtStream stream[DEV_NUM]; for (uint32_t rankId = 0; rankId < DEV_NUM; rankId++) { ret = aclrtSetDevice(rankId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtSetDevice failed. ret = %d \n", ret); return ret); ret = aclrtCreateStream(&stream[rankId]); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtCreateStream failed. ret = %d \n", ret); return ret); } int32_t devices[DEV_NUM]; for (int i = 0; i < DEV_NUM; i++) { devices[i] = i; } // 初始化集合通信域 HcclComm comms[DEV_NUM]; ret = HcclCommInitAll(DEV_NUM, devices, comms); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] HcclCommInitAll failed. ret = %d \n", ret); return ret); Args args[DEV_NUM]; // 启动多线程 std::vector<std::unique_ptr<std::thread>> threads(DEV_NUM); for (uint32_t rankId = 0; rankId < DEV_NUM; rankId++) { args[rankId].rankId = rankId; args[rankId].hcclComm = comms[rankId]; args[rankId].stream = stream[rankId]; threads[rankId].reset(new(std::nothrow) std::thread(&launchOneThread_AllGatherMm, std::ref(args [rankId]))); } for (uint32_t rankId = 0; rankId < DEV_NUM; rankId++) { threads[rankId]->join(); } for (int i = 0; i < DEV_NUM; i++) { auto hcclRet = HcclCommDestroy(comms[i]); CHECK_RET(hcclRet == HCCL_SUCCESS, LOG_PRINT("[ERROR] HcclCommDestroy failed. ret = %d \n", ret); return -1); } aclFinalize(); return 0; }