昇腾社区首页
中文
注册

aclnnConvertWeightToINT4Pack

支持的产品型号

  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件

函数原型

每个算子分为两段式接口,必须先调用“aclnnConvertWeightToINT4PackGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnConvertWeightToINT4Pack”接口执行计算。

  • aclnnStatus aclnnConvertWeightToINT4PackGetWorkspaceSize(const aclTensor *weight, aclTensor *weightInt4Pack, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnConvertWeightToINT4Pack(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能说明

算子功能:将int32的输入weight打包为int4,并进行交叠排放。当输出weightInt4Pack的数据格式为FRACTAL_NZ时,会将数据格式从ND转为FRACTAL_NZ之后输出。

aclnnConvertWeightToINT4PackGetWorkspaceSize

  • 参数说明

    • weight(aclTensor*, 计算输入):输入的weight,数据类型支持INT32,数据格式支持ND,维度支持2维,shape支持[k, n]、[n, k]。 当输出weightInt4Pack数据类型为INT4时,要求最后一维度为2对齐。当输出weightInt4Pack数据类型为INT32时,要求最后一维度为8对齐。 输入weight中元素的值需要在int4的表示范围内,即[-8, 7]。不支持非连续Tensor。

    • weightInt4Pack(aclTensor*, 计算输出):INT4打包后的输出,数据类型为INT4或INT32(用1个INT32数据承载8个INT4数据)。数据格式支持ND、FRACTAL_NZ。不支持非连续Tensor。

      对于weightInt4Pack不同的数据格式,weightInt4Pack的shape要求如下:

      • 数据格式为ND时:
        • weightInt4Pack数据类型为INT4时,shape需要和输入weight保持一致为(dim0, dim1)。
        • weightInt4Pack数据类型为INT32时,shape的最后一维度为weight最后一维度的1/8为(dim0, dim1/8);
      • 数据格式为FRACTAL_NZ时:
        • Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件:
          • weightInt4Pack数据类型为INT4时,shape需要和输入weight保持一致为(dim0, dim1),storage shape为(ceil_div(dim1, 64), ceil_div(dim0, 16), 16, 64)。
          • weightInt4Pack数据类型为INT32时,view shape的最后一维度为weight最后一维度的1/8为(dim0, dim1/8),storage shape为(ceil_div(n, 8), ceil_div(k, 16), 16, 8)。
    • workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。

    • executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。

  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    161001 (ACLNN_ERR_PARAM_NULLPTR):如果传入的必选输入、输出、属性是空指针。
    161002 (ACLNN_ERR_PARAM_INVALID):
      - 传入weight、weightInt4Pack的shape维度不符合要求。
      - 传入weight、weightInt4Pack的数据类型不在支持的范围之内。
      - 传入weight、weightInt4Pack的shape大小不符合约束要求。
      - 传入空tensor场景。
      - 输入tensor的Format不是ND。
    361001 (ACLNN_ERR_RUNTIME_ERROR):
      - 数据从host侧拷贝到device侧异常。
      - 数据从device侧拷贝到host侧异常。

aclnnConvertWeightToINT4Pack

  • 参数说明

    • workspace(void*, 入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnConvertWeightToINT4PackGetWorkspaceSize获取。
    • executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束说明

调用示例

  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件: 示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。 伪量化有aclnnWeightQuantBatchMatmulV2和aclnnWeightQuantBatchMatmulV3接口, 这里以aclnnWeightQuantBatchMatmulV2为例

    #include <iostream>
    #include <vector>
    #include "acl/acl.h"
    #include "aclnnop/aclnn_cast.h"
    #include "aclnnop/aclnn_weight_quant_batch_matmul_v2.h"
    
    #define CHECK_RET(cond, return_expr) \
    do {                               \
    if (!(cond)) {                   \
    return_expr;                   \
    }                                \
    } while (0)
    
    #define LOG_PRINT(message, ...)     \
    do {                              \
    printf(message, ##__VA_ARGS__); \
    } while (0)
    
    #define CEIL_DIV(x, y) ((((x) + (y)) - 1) / (y))
    #define CEIL_ALIGN(x, y) ((((x) + (y)) - 1) / (y) * (y))
    
    int64_t GetShapeSize(const std::vector<int64_t>& shape) {
    int64_t shapeSize = 1;
    for (auto i : shape) {
    shapeSize *= i;
    }
    return shapeSize;
    }
    
    extern "C" aclnnStatus aclnnConvertWeightToINT4PackGetWorkspaceSize(const aclTensor *weight, const aclTensor *weightInt4Pack,
    uint64_t *workspaceSize, aclOpExecutor **executor);
    
    extern "C" aclnnStatus aclnnConvertWeightToINT4Pack(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor,
    aclrtStream stream);
    
    int Init(int32_t deviceId, aclrtStream* stream) {
    // 固定写法,AscendCL初始化
    auto ret = aclInit(nullptr);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
    ret = aclrtSetDevice(deviceId);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
    ret = aclrtCreateStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
    return 0;
    }
    
    template <typename T>
    int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) {
    auto size = GetShapeSize(shape) * sizeof(T);
    // 调用aclrtMalloc申请device侧内存
    auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
    // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
    ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
    
    // 计算连续tensor的strides
    std::vector<int64_t> strides(shape.size(), 1);
    for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
    }
    
    // 调用aclCreateTensor接口创建aclTensor
    *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
    shape.data(), shape.size(), *deviceAddr);
    return 0;
    }
    
    template <typename T>
    int CreateAclTensorInt4(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor, aclFormat format) {
    auto size = hostData.size() * sizeof(T);
    // 调用aclrtMalloc申请device侧内存
    auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
    // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
    ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
    
    // 计算连续tensor的strides
    std::vector<int64_t> strides(shape.size(), 1);
    for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
    }
    
    // 调用aclCreateTensor接口创建aclTensor
    if (format == aclFormat::ACL_FORMAT_ND) {
    *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
    shape.data(), shape.size(), *deviceAddr);
    } else {
    std::vector<int64_t> nzShape;
    if (dataType == aclDataType::ACL_INT4) {
    nzShape = {CEIL_DIV(shape[1], 64), CEIL_DIV(shape[0], 16), 16, 64};
    } else {
    nzShape = {CEIL_DIV(shape[1], 8), CEIL_DIV(shape[0], 16), 16, 8};
    }
    *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, 
    aclFormat::ACL_FORMAT_FRACTAL_NZ, nzShape.data(), nzShape.size(), *deviceAddr);
    }
    
    return 0;
    }
    
    int main() {
    // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
    // 根据自己的实际device填写deviceId
    int32_t deviceId = 0;
    aclrtStream stream;
    auto ret = Init(deviceId, &stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
    aclDataType weightInt4PackDtype = aclDataType::ACL_INT4;
    aclFormat weightFormat = aclFormat::ACL_FORMAT_FRACTAL_NZ;
    bool isWeightTransposed = true;
    
    // 2. 构造输入与输出,需要根据API的接口自定义构造
    int64_t m = 16;
    int64_t k = 72;
    int64_t n = 17;
    int64_t weightDim0 = k;
    int64_t weightDim1 = n;
    if (isWeightTransposed) {
    weightDim0 = n;
    weightDim1 = k;
    }
    std::vector<int64_t> xShape = {m, k};
    std::vector<int64_t> weightShape = {weightDim0, weightDim1};
    std::vector<int64_t> weightInt4PackShape;
    if (weightInt4PackDtype == aclDataType::ACL_INT4) {
    weightInt4PackShape = {weightDim0, weightDim1};
    } else {
    weightInt4PackShape = {weightDim0, weightDim1/8};
    }
    std::vector<int64_t> yShape = {m, n};
    void* xDeviceAddr = nullptr;
    void* weightDeviceAddr = nullptr;
    void* weightInt4PackDeviceAddr = nullptr;
    void* yDeviceAddr = nullptr;
    aclTensor* x = nullptr;
    aclTensor* weight = nullptr;
    aclTensor* weightInt4Pack = nullptr;
    aclTensor* y = nullptr;
    std::vector<float> xHostData(m * k, 1);
    std::vector<int32_t> weightHostData(k * n, 1);
    std::vector<float> yHostData(m * n, 0);
    
    std::vector<int64_t> antiquantScaleShape = {n};
    void* antiquantScaleDeviceAddr = nullptr;
    aclTensor* antiquantScale = nullptr;
    std::vector<float> antiquantScaleHostData(n, 1);
    
    // 创建x aclTensor
    ret = CreateAclTensor(xHostData, xShape, &xDeviceAddr, aclDataType::ACL_FLOAT, &x);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建weight aclTensor
    ret = CreateAclTensor(weightHostData, weightShape, &weightDeviceAddr, aclDataType::ACL_INT32, &weight);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    if (weightInt4PackDtype == aclDataType::ACL_INT4) {
    std::vector<int8_t> weightInt4PackHostData(n * k / 2, 0); //一个int8数据存放2个int4数据,所以这里除以2
    if (weightFormat == aclFormat::ACL_FORMAT_FRACTAL_NZ) {
    weightInt4PackHostData.resize(CEIL_ALIGN(weightDim1/2, 32) * CEIL_ALIGN(weightDim0, 16), 0);
    }
    // 创建weightInt4Pack aclTensor
    ret = CreateAclTensorInt4(weightInt4PackHostData, weightInt4PackShape, &weightInt4PackDeviceAddr, 
    weightInt4PackDtype, &weightInt4Pack, weightFormat);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    } else {
    std::vector<int32_t> weightInt4PackHostData(n * k / 8, 1); //一个int32数据存放8个int4数据,所以这里除以8
    if (weightFormat == aclFormat::ACL_FORMAT_FRACTAL_NZ) {
    weightInt4PackHostData.resize(CEIL_ALIGN(weightDim1/8, 8) * CEIL_ALIGN(weightDim0, 16), 0);
    ret = CreateAclTensorInt4(weightInt4PackHostData, weightInt4PackShape, &weightInt4PackDeviceAddr, 
    weightInt4PackDtype, &weightInt4Pack, weightFormat);
    } else {
    // 创建weightInt4Pack aclTensor
    ret = CreateAclTensor(weightInt4PackHostData, weightInt4PackShape, &weightInt4PackDeviceAddr, 
    weightInt4PackDtype, &weightInt4Pack);
    }
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    }
    // 创建y aclTensor
    ret = CreateAclTensor(yHostData, yShape, &yDeviceAddr, aclDataType::ACL_FLOAT, &y);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建antiquantScale aclTensor
    ret = CreateAclTensor(antiquantScaleHostData, antiquantScaleShape, &antiquantScaleDeviceAddr, aclDataType::ACL_FLOAT, &antiquantScale);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    
    // 创建xFp16 aclTensor
    void* xFp16DeviceAddr = nullptr;
    aclTensor* xFp16 = nullptr;
    ret = CreateAclTensor(xHostData, xShape, &xFp16DeviceAddr, aclDataType::ACL_FLOAT16, &xFp16);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建antiquantScale aclTensor
    void* antiquantScaleFp16DeviceAddr = nullptr;
    aclTensor* antiquantScaleFp16 = nullptr;
    ret = CreateAclTensor(antiquantScaleHostData, antiquantScaleShape, &antiquantScaleFp16DeviceAddr, aclDataType::ACL_FLOAT16, &antiquantScaleFp16);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建yFp16 aclTensor
    void* yFp16DeviceAddr = nullptr;
    aclTensor* yFp16 = nullptr;
    ret = CreateAclTensor(yHostData, yShape, &yFp16DeviceAddr, aclDataType::ACL_FLOAT16, &yFp16);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    
    // 3. 调用CANN算子库API,需要修改为具体的Api名称
    uint64_t workspaceSize = 0;
    aclOpExecutor* executor;
    void* workspaceAddr = nullptr;
    
    // 对weight做int32转int4pack
    ret = aclnnConvertWeightToINT4PackGetWorkspaceSize(weight, weightInt4Pack, &workspaceSize, &executor);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnConvertWeightToINT4PackGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
    ret = aclnnConvertWeightToINT4Pack(workspaceAddr, workspaceSize, executor, stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnConvertWeightToINT4Pack failed. ERROR: %d\n", ret); return ret);
    
    // weight为转置场景,且weightInt4Pack shape为NZ时,需要调用aclInitTensor转换为非连续tensor
    if (isWeightTransposed && weightFormat == aclFormat::ACL_FORMAT_FRACTAL_NZ) { 
    std::vector<int64_t> strides(weightInt4PackShape.size(), 1);
    for (int64_t i = weightInt4PackShape.size() - 2; i >= 0; i--) {
    strides[i] = weightInt4PackShape[i + 1] * strides[i + 1];
    }
    std::swap(strides[0], strides[1]);
    std::swap(weightInt4PackShape[0], weightInt4PackShape[1]);
    std::vector<int64_t> nzShape = {CEIL_DIV(k, 64), CEIL_DIV(n, 16), 16, 8};
    if (weightInt4PackDtype == aclDataType::ACL_INT4) {
    nzShape[3] = 64;
    }
    aclInitTensor(weightInt4Pack, weightInt4PackShape.data(), weightInt4PackShape.size(), weightInt4PackDtype, strides.data(), 0, 
    weightFormat, nzShape.data(), nzShape.size(), weightInt4PackDeviceAddr);
    }
    
    // 调用cast生成FP16的输入
    ret = aclnnCastGetWorkspaceSize(x, aclDataType::ACL_FLOAT16, xFp16, &workspaceSize, &executor);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCastGetWorkspaceSize0 failed. ERROR: %d\n", ret); return ret);
    // 根据第一段接口计算出的workspaceSize申请device内存
    
    if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
    }
    ret = aclnnCast(workspaceAddr, workspaceSize, executor, stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCast0 failed. ERROR: %d\n", ret); return ret);
    
    ret = aclrtSynchronizeStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
    
    ret = aclnnCastGetWorkspaceSize(antiquantScale, aclDataType::ACL_FLOAT16, antiquantScaleFp16, &workspaceSize, &executor);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCastGetWorkspaceSize1 failed. ERROR: %d\n", ret); return ret);
    // 根据第一段接口计算出的workspaceSize申请device内存
    
    if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
    }
    ret = aclnnCast(workspaceAddr, workspaceSize, executor, stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCast1 failed. ERROR: %d\n", ret); return ret);
    
    ret = aclrtSynchronizeStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
    
    // 调用aclnnWeightQuantBatchMatmulV2第一段接口
    ret = aclnnWeightQuantBatchMatmulV2GetWorkspaceSize(xFp16, weightInt4Pack, antiquantScaleFp16, nullptr, nullptr, nullptr, nullptr, 0, yFp16, &workspaceSize, &executor);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnWeightQuantBatchMatmulV2GetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
    // 根据第一段接口计算出的workspaceSize申请device内存
    
    if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
    }
    // 调用aclnnWeightQuantBatchMatmulV2第二段接口
    ret = aclnnWeightQuantBatchMatmulV2(workspaceAddr, workspaceSize, executor, stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnWeightQuantBatchMatmulV2 failed. ERROR: %d\n", ret); return ret);
    
    // 4. (固定写法)同步等待任务执行结束
    ret = aclrtSynchronizeStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
    
    // 将输出转为FP32
    ret = aclnnCastGetWorkspaceSize(yFp16, aclDataType::ACL_FLOAT, y, &workspaceSize, &executor);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCastGetWorkspaceSize2 failed. ERROR: %d\n", ret); return ret);
    // 根据第一段接口计算出的workspaceSize申请device内存
    
    if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
    }
    ret = aclnnCast(workspaceAddr, workspaceSize, executor, stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCast2 failed. ERROR: %d\n", ret); return ret);
    
    ret = aclrtSynchronizeStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
    
    // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
    auto size = GetShapeSize(yShape);
    std::vector<float> resultData(size, 0);
    ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), yDeviceAddr,
    size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
    for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
    }
    
    // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
    aclDestroyTensor(x);
    aclDestroyTensor(weight);
    aclDestroyTensor(weightInt4Pack);
    aclDestroyTensor(antiquantScale);
    aclDestroyTensor(y);
    aclDestroyTensor(xFp16);
    aclDestroyTensor(antiquantScaleFp16);
    aclDestroyTensor(yFp16);
    
    // 7. 释放device资源
    aclrtFree(xDeviceAddr);
    aclrtFree(weightDeviceAddr);
    aclrtFree(weightInt4PackDeviceAddr);
    aclrtFree(antiquantScaleDeviceAddr);
    aclrtFree(yDeviceAddr);
    aclrtFree(xFp16DeviceAddr);
    aclrtFree(antiquantScaleFp16DeviceAddr);
    aclrtFree(yFp16DeviceAddr);
    
    if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
    }
    aclrtDestroyStream(stream);
    aclrtResetDevice(deviceId);
    aclFinalize();
    
    return 0;
    }