aclnnConvertWeightToINT4Pack
支持的产品型号
Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件
函数原型
每个算子分为两段式接口,必须先调用“aclnnConvertWeightToINT4PackGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnConvertWeightToINT4Pack”接口执行计算。
aclnnStatus aclnnConvertWeightToINT4PackGetWorkspaceSize(const aclTensor *weight, aclTensor *weightInt4Pack, uint64_t *workspaceSize, aclOpExecutor **executor)
aclnnStatus aclnnConvertWeightToINT4Pack(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能说明
算子功能:将int32的输入weight打包为int4,并进行交叠排放。当输出weightInt4Pack的数据格式为FRACTAL_NZ时,会将数据格式从ND转为FRACTAL_NZ之后输出。
aclnnConvertWeightToINT4PackGetWorkspaceSize
参数说明
weight(aclTensor*, 计算输入):输入的weight,数据类型支持INT32,数据格式支持ND,维度支持2维,shape支持[k, n]、[n, k]。 当输出weightInt4Pack数据类型为INT4时,要求最后一维度为2对齐。当输出weightInt4Pack数据类型为INT32时,要求最后一维度为8对齐。 输入weight中元素的值需要在int4的表示范围内,即[-8, 7]。不支持非连续Tensor。
weightInt4Pack(aclTensor*, 计算输出):INT4打包后的输出,数据类型为INT4或INT32(用1个INT32数据承载8个INT4数据)。数据格式支持ND、FRACTAL_NZ。不支持非连续Tensor。
对于weightInt4Pack不同的数据格式,weightInt4Pack的shape要求如下:
- 数据格式为ND时:
- weightInt4Pack数据类型为INT4时,shape需要和输入weight保持一致为(dim0, dim1)。
- weightInt4Pack数据类型为INT32时,shape的最后一维度为weight最后一维度的1/8为(dim0, dim1/8);
- 数据格式为FRACTAL_NZ时:
- Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件:
- weightInt4Pack数据类型为INT4时,shape需要和输入weight保持一致为(dim0, dim1),storage shape为(ceil_div(dim1, 64), ceil_div(dim0, 16), 16, 64)。
- weightInt4Pack数据类型为INT32时,view shape的最后一维度为weight最后一维度的1/8为(dim0, dim1/8),storage shape为(ceil_div(n, 8), ceil_div(k, 16), 16, 8)。
- Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件:
- 数据格式为ND时:
workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错: 161001 (ACLNN_ERR_PARAM_NULLPTR):如果传入的必选输入、输出、属性是空指针。 161002 (ACLNN_ERR_PARAM_INVALID): - 传入weight、weightInt4Pack的shape维度不符合要求。 - 传入weight、weightInt4Pack的数据类型不在支持的范围之内。 - 传入weight、weightInt4Pack的shape大小不符合约束要求。 - 传入空tensor场景。 - 输入tensor的Format不是ND。 361001 (ACLNN_ERR_RUNTIME_ERROR): - 数据从host侧拷贝到device侧异常。 - 数据从device侧拷贝到host侧异常。
aclnnConvertWeightToINT4Pack
参数说明
- workspace(void*, 入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnConvertWeightToINT4PackGetWorkspaceSize获取。
- executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
约束说明
无
调用示例
Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件: 示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。 伪量化有aclnnWeightQuantBatchMatmulV2和aclnnWeightQuantBatchMatmulV3接口, 这里以aclnnWeightQuantBatchMatmulV2为例
#include <iostream> #include <vector> #include "acl/acl.h" #include "aclnnop/aclnn_cast.h" #include "aclnnop/aclnn_weight_quant_batch_matmul_v2.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) #define CEIL_DIV(x, y) ((((x) + (y)) - 1) / (y)) #define CEIL_ALIGN(x, y) ((((x) + (y)) - 1) / (y) * (y)) int64_t GetShapeSize(const std::vector<int64_t>& shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } extern "C" aclnnStatus aclnnConvertWeightToINT4PackGetWorkspaceSize(const aclTensor *weight, const aclTensor *weightInt4Pack, uint64_t *workspaceSize, aclOpExecutor **executor); extern "C" aclnnStatus aclnnConvertWeightToINT4Pack(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream); int Init(int32_t deviceId, aclrtStream* stream) { // 固定写法,AscendCL初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } template <typename T> int CreateAclTensorInt4(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor, aclFormat format) { auto size = hostData.size() * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor if (format == aclFormat::ACL_FORMAT_ND) { *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); } else { std::vector<int64_t> nzShape; if (dataType == aclDataType::ACL_INT4) { nzShape = {CEIL_DIV(shape[1], 64), CEIL_DIV(shape[0], 16), 16, 64}; } else { nzShape = {CEIL_DIV(shape[1], 8), CEIL_DIV(shape[0], 16), 16, 8}; } *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_FRACTAL_NZ, nzShape.data(), nzShape.size(), *deviceAddr); } return 0; } int main() { // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtStream stream; auto ret = Init(deviceId, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); aclDataType weightInt4PackDtype = aclDataType::ACL_INT4; aclFormat weightFormat = aclFormat::ACL_FORMAT_FRACTAL_NZ; bool isWeightTransposed = true; // 2. 构造输入与输出,需要根据API的接口自定义构造 int64_t m = 16; int64_t k = 72; int64_t n = 17; int64_t weightDim0 = k; int64_t weightDim1 = n; if (isWeightTransposed) { weightDim0 = n; weightDim1 = k; } std::vector<int64_t> xShape = {m, k}; std::vector<int64_t> weightShape = {weightDim0, weightDim1}; std::vector<int64_t> weightInt4PackShape; if (weightInt4PackDtype == aclDataType::ACL_INT4) { weightInt4PackShape = {weightDim0, weightDim1}; } else { weightInt4PackShape = {weightDim0, weightDim1/8}; } std::vector<int64_t> yShape = {m, n}; void* xDeviceAddr = nullptr; void* weightDeviceAddr = nullptr; void* weightInt4PackDeviceAddr = nullptr; void* yDeviceAddr = nullptr; aclTensor* x = nullptr; aclTensor* weight = nullptr; aclTensor* weightInt4Pack = nullptr; aclTensor* y = nullptr; std::vector<float> xHostData(m * k, 1); std::vector<int32_t> weightHostData(k * n, 1); std::vector<float> yHostData(m * n, 0); std::vector<int64_t> antiquantScaleShape = {n}; void* antiquantScaleDeviceAddr = nullptr; aclTensor* antiquantScale = nullptr; std::vector<float> antiquantScaleHostData(n, 1); // 创建x aclTensor ret = CreateAclTensor(xHostData, xShape, &xDeviceAddr, aclDataType::ACL_FLOAT, &x); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建weight aclTensor ret = CreateAclTensor(weightHostData, weightShape, &weightDeviceAddr, aclDataType::ACL_INT32, &weight); CHECK_RET(ret == ACL_SUCCESS, return ret); if (weightInt4PackDtype == aclDataType::ACL_INT4) { std::vector<int8_t> weightInt4PackHostData(n * k / 2, 0); //一个int8数据存放2个int4数据,所以这里除以2 if (weightFormat == aclFormat::ACL_FORMAT_FRACTAL_NZ) { weightInt4PackHostData.resize(CEIL_ALIGN(weightDim1/2, 32) * CEIL_ALIGN(weightDim0, 16), 0); } // 创建weightInt4Pack aclTensor ret = CreateAclTensorInt4(weightInt4PackHostData, weightInt4PackShape, &weightInt4PackDeviceAddr, weightInt4PackDtype, &weightInt4Pack, weightFormat); CHECK_RET(ret == ACL_SUCCESS, return ret); } else { std::vector<int32_t> weightInt4PackHostData(n * k / 8, 1); //一个int32数据存放8个int4数据,所以这里除以8 if (weightFormat == aclFormat::ACL_FORMAT_FRACTAL_NZ) { weightInt4PackHostData.resize(CEIL_ALIGN(weightDim1/8, 8) * CEIL_ALIGN(weightDim0, 16), 0); ret = CreateAclTensorInt4(weightInt4PackHostData, weightInt4PackShape, &weightInt4PackDeviceAddr, weightInt4PackDtype, &weightInt4Pack, weightFormat); } else { // 创建weightInt4Pack aclTensor ret = CreateAclTensor(weightInt4PackHostData, weightInt4PackShape, &weightInt4PackDeviceAddr, weightInt4PackDtype, &weightInt4Pack); } CHECK_RET(ret == ACL_SUCCESS, return ret); } // 创建y aclTensor ret = CreateAclTensor(yHostData, yShape, &yDeviceAddr, aclDataType::ACL_FLOAT, &y); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建antiquantScale aclTensor ret = CreateAclTensor(antiquantScaleHostData, antiquantScaleShape, &antiquantScaleDeviceAddr, aclDataType::ACL_FLOAT, &antiquantScale); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建xFp16 aclTensor void* xFp16DeviceAddr = nullptr; aclTensor* xFp16 = nullptr; ret = CreateAclTensor(xHostData, xShape, &xFp16DeviceAddr, aclDataType::ACL_FLOAT16, &xFp16); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建antiquantScale aclTensor void* antiquantScaleFp16DeviceAddr = nullptr; aclTensor* antiquantScaleFp16 = nullptr; ret = CreateAclTensor(antiquantScaleHostData, antiquantScaleShape, &antiquantScaleFp16DeviceAddr, aclDataType::ACL_FLOAT16, &antiquantScaleFp16); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建yFp16 aclTensor void* yFp16DeviceAddr = nullptr; aclTensor* yFp16 = nullptr; ret = CreateAclTensor(yHostData, yShape, &yFp16DeviceAddr, aclDataType::ACL_FLOAT16, &yFp16); CHECK_RET(ret == ACL_SUCCESS, return ret); // 3. 调用CANN算子库API,需要修改为具体的Api名称 uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; // 对weight做int32转int4pack ret = aclnnConvertWeightToINT4PackGetWorkspaceSize(weight, weightInt4Pack, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnConvertWeightToINT4PackGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); ret = aclnnConvertWeightToINT4Pack(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnConvertWeightToINT4Pack failed. ERROR: %d\n", ret); return ret); // weight为转置场景,且weightInt4Pack shape为NZ时,需要调用aclInitTensor转换为非连续tensor if (isWeightTransposed && weightFormat == aclFormat::ACL_FORMAT_FRACTAL_NZ) { std::vector<int64_t> strides(weightInt4PackShape.size(), 1); for (int64_t i = weightInt4PackShape.size() - 2; i >= 0; i--) { strides[i] = weightInt4PackShape[i + 1] * strides[i + 1]; } std::swap(strides[0], strides[1]); std::swap(weightInt4PackShape[0], weightInt4PackShape[1]); std::vector<int64_t> nzShape = {CEIL_DIV(k, 64), CEIL_DIV(n, 16), 16, 8}; if (weightInt4PackDtype == aclDataType::ACL_INT4) { nzShape[3] = 64; } aclInitTensor(weightInt4Pack, weightInt4PackShape.data(), weightInt4PackShape.size(), weightInt4PackDtype, strides.data(), 0, weightFormat, nzShape.data(), nzShape.size(), weightInt4PackDeviceAddr); } // 调用cast生成FP16的输入 ret = aclnnCastGetWorkspaceSize(x, aclDataType::ACL_FLOAT16, xFp16, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCastGetWorkspaceSize0 failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } ret = aclnnCast(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCast0 failed. ERROR: %d\n", ret); return ret); ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); ret = aclnnCastGetWorkspaceSize(antiquantScale, aclDataType::ACL_FLOAT16, antiquantScaleFp16, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCastGetWorkspaceSize1 failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } ret = aclnnCast(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCast1 failed. ERROR: %d\n", ret); return ret); ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 调用aclnnWeightQuantBatchMatmulV2第一段接口 ret = aclnnWeightQuantBatchMatmulV2GetWorkspaceSize(xFp16, weightInt4Pack, antiquantScaleFp16, nullptr, nullptr, nullptr, nullptr, 0, yFp16, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnWeightQuantBatchMatmulV2GetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } // 调用aclnnWeightQuantBatchMatmulV2第二段接口 ret = aclnnWeightQuantBatchMatmulV2(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnWeightQuantBatchMatmulV2 failed. ERROR: %d\n", ret); return ret); // 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 将输出转为FP32 ret = aclnnCastGetWorkspaceSize(yFp16, aclDataType::ACL_FLOAT, y, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCastGetWorkspaceSize2 failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } ret = aclnnCast(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCast2 failed. ERROR: %d\n", ret); return ret); ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改 auto size = GetShapeSize(yShape); std::vector<float> resultData(size, 0); ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), yDeviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]); } // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改 aclDestroyTensor(x); aclDestroyTensor(weight); aclDestroyTensor(weightInt4Pack); aclDestroyTensor(antiquantScale); aclDestroyTensor(y); aclDestroyTensor(xFp16); aclDestroyTensor(antiquantScaleFp16); aclDestroyTensor(yFp16); // 7. 释放device资源 aclrtFree(xDeviceAddr); aclrtFree(weightDeviceAddr); aclrtFree(weightInt4PackDeviceAddr); aclrtFree(antiquantScaleDeviceAddr); aclrtFree(yDeviceAddr); aclrtFree(xFp16DeviceAddr); aclrtFree(antiquantScaleFp16DeviceAddr); aclrtFree(yFp16DeviceAddr); if (workspaceSize > 0) { aclrtFree(workspaceAddr); } aclrtDestroyStream(stream); aclrtResetDevice(deviceId); aclFinalize(); return 0; }