昇腾社区首页
中文
注册

aclnnSquaredRelu

支持的产品型号

  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件

函数原型

每个算子分为两段式接口,必须先调用“aclnnSquaredReluGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnSquaredRelu”接口执行计算。

  • aclnnStatus aclnnSquaredReluGetWorkspaceSize( const aclTensor *input, const aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnSquaredRelu( void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能说明

  • 算子功能:

    SquaredReLU 函数是一个基于标准ReLU函数的变体,其主要特点是对ReLU函数的输出进行平方,常作为模型的激活函数。

  • 计算公式:

    yi=(ReLU(xi))2y_i=(ReLU(x_i))^2

    其中ReLU的计算公式:

    ReLU(xi)=max(0,xi)ReLU(x_i)=max(0,x_i)

aclnnSquaredReluGetWorkspaceSize

  • 参数说明

    • input(aclTensor*,计算输入):输入的张量,公式中的x,Device侧的aclTensor,数据类型支持BFLOAT16、FLOAT16、FLOAT。shape维度1至8维。支持非连续的Tensor数据格式支持ND。
    • out(aclTensor*,计算输出): 输出的张量,公式中的输出y,Device侧的aclTensor,数据类型支持BFLOAT16、FLOAT16、FLOAT。支持非连续的Tensor数据格式支持ND,输出的数据类型、shape、数据格式与输入的数据类型、shape、数据格式保持一致。
    • workspaceSize(uint64_t*,出参):返回用户需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**,出参):返回op执行器,包含了算子计算流程。
  • 返回值

    aclnnStatus:返回状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    返回161001(ACLNN_ERR_PARAM_NULLPTR): 传入的input或out是空指针。
    返回161002(ACLNN_ERR_PARAM_INVALID): input的数据类型不在支持的范围之内。

aclnnSquaredRelu

  • 参数说明

    • workspace(void*,入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnSquaredReluGetWorkspaceSize获取。
    • executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream,入参):指定执行任务的AscendCL Stream流。
  • 返回值

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束说明

  • 输入值为nan, 输出也为nan, 输入是inf, 输出也是inf。
  • 输入是-inf, 输出是0。
  • 输入shape只支持维度1至8维,不在范围内执行报错。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_squared_relu.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

void PrintOutResult(std::vector<int64_t> &shape, void** deviceAddr) {
  auto size = GetShapeSize(shape);
  std::vector<float> resultData(size, 0);
  auto ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]),
                         *deviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("mean result[%ld] is: %f\n", i, resultData[i]);
  }
}

void PrintInResult(std::vector<int64_t> &shape, void** deviceAddr) {
  auto size = GetShapeSize(shape);
  std::vector<float> resultData(size, 0);
  auto ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]),
                         *deviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("mean input[%ld] is: %f\n", i, resultData[i]);
  }
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // (Fixed writing) Initialize AscendCL.
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // Call aclrtMalloc to allocate memory on the device.
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // Call aclrtMemcpy to copy the data on the host to the memory on the device.
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // Compute the strides of the contiguous tensor.
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // Call aclCreateTensor to create an aclTensor.
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> inputShape = {2, 4};

std::vector<float> inputHostData = {0, 1.0, 2, -33.0, 4, 5, 6, 7};

void* inputDeviceAddr = nullptr;

aclTensor* input = nullptr;
// 创建input aclTensor
ret = CreateAclTensor(inputHostData, inputShape, &inputDeviceAddr, aclDataType::ACL_FLOAT, &input);
CHECK_RET(ret == ACL_SUCCESS, return ret);

//   char* approximate = "tanh";

std::vector<int64_t> outShape = {2, 4};
std::vector<float> outHostData(2 * 4, 1);
aclTensor* out = nullptr;
void* outDeviceAddr = nullptr;
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
CHECK_RET(ret == ACL_SUCCESS, return ret);

// 3. 调用CANN算子库API,需要修改为具体的Api名称
uint64_t workspaceSize = 16 * 1024 * 1024;
aclOpExecutor* executor;

PrintInResult(inputShape, &inputDeviceAddr);

// 调用aclnnSquaredRelu第一段接口
ret = aclnnSquaredReluGetWorkspaceSize(
input,
out,
&workspaceSize,
&executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnSquaredReluGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);

// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}

// 调用aclnnSquaredRelu第二段接口
ret = aclnnSquaredRelu(
workspaceAddr,
workspaceSize,
executor,
stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnSquaredRelu failed. ERROR: %d\n", ret); return ret);

// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

// 5. 获取输出的值,将device侧内存上的结果复制至host侧,需要根据具体API的接口定义修改
PrintOutResult(outShape, &outDeviceAddr);

// 6. 释放aclTensor和aclTensor,需要根据具体API的接口定义修改
aclDestroyTensor(input);
aclDestroyTensor(out);

// 7.释放device资源,需要根据具体API的接口定义修改
aclrtFree(inputDeviceAddr);
aclrtFree(outDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();

return 0;
}