文档
注册
评分
提单
论坛
小AI

conv2d_backprop_filter

功能说明

在给定5HD格式的Data和5HD格式的out_backprop的情况下计算float32的2-D反卷积。

Data tensor 的shape是5HD,即(N, C1, H, W, C0);out_backprop Tensor 的shape是 5HD,即(N, C1, H, W, C0)。

函数原型

conv2d_backprop_filter(input_x, out_backprop, filter_sizes, para_dict)

参数说明

  • input_x:2d卷积的FeatureMap,tensor,5HD格式,目前支持float16类型
  • out_backprop:2d卷积的输出反向,目前支持float16类型
  • filter_size:2d卷积的权重矩阵大小
  • para_dict:字典格式,包含各种参数,后续参数扩展一般都在para_dict
    其中目前在para_dict里要传递的参数:
    • strides:list类型,2d卷积在FeatureMap HW方向的移动步长。
    • padding:list类型,2d卷积在FeatureMap HW方向的补边。
    • dilations:list类型,2d卷积在Filter HW方向的膨胀系数。
    • groups:2d卷积的Filter Group,默认值为1。
    • res_dtype:输出的数据类型。
    • kernel_name:算子名称。

返回值

res_tensor:表示卷积计算的tensor,即卷积计算的结果输出。

约束说明

此接口暂不支持与其他TBE DSL计算接口混合使用。

支持的型号

Atlas 200/300/500 推理产品

Atlas 训练系列产品

Atlas 推理系列产品(Ascend 310P处理器)

Atlas 200/500 A2推理产品

Atlas A2训练系列产品/Atlas 800I A2推理产品

调用示例

from tbe import tvm
from tbe import dsl

out_backprop_shape = (1, 1, 7, 7, 16)
out_backprop_dtype = "float16"
fmap_shape = (1, 1, 7, 7, 16)
fmap_dtype = "float16"
filter_sizes = (16, 16, 1, 1)

out_backprop = tvm.placeholder(out_backprop_shape, name="out_backprop", dtype=out_backprop_dtype)
fmap = tvm.placeholder(fmap_shape, name="fmap", dtype=fmap_dtype)

strides = [1, 1]
padding = [0, 0, 0, 0]
dilations = [1, 1, 1, 1]
groups = 1
res_dtype = "float32"
kernel_name = "conv2d_backprop_filter_dx_1_1_7_7_16_dy_1_1_7_7_16_dw_16_16_1_1_s_1_1_p_SAME"

para_dict = {
    "strides": strides,
    "padding": padding,
    "dilations": dilations,
    "groups": groups,
    "res_dtype": res_dtype,
    "kernel_name": kernel_name
}

filter_backprop = dsl.conv2d_backprop_filter(
    input_x=fmap,
    out_backprop=out_backprop,
    filter_sizes=filter_sizes,
    para_dict=para_dict
)
搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词