下载
EN
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

aclnnBatchNormStats

支持的产品型号

  • Atlas 训练系列产品。
  • Atlas A2训练系列产品/Atlas 800I A2推理产品。

接口原型

每个算子分为两段式接口,必须先调用“aclnnBatchNormStatsGetWorkspaceSize”接口获取入参并根据流程计算所需workspace大小,再调用“aclnnBatchNormStats”接口执行计算。

  • aclnnStatus aclnnBatchNormStatsGetWorkspaceSize(const aclTensor* input, double eps, aclTensor* meanOut, aclTensor* invstdOut, uint64_t* workspaceSize, aclOpExecutor** executor)
  • aclnnStatus aclnnBatchNormStats(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)

功能描述

  • 算子功能: 计算单卡输入数据的均值和标准差的倒数。

  • 计算公式:

    均值:

    xˉ=i=1nxin\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}

    标准差倒数:

    1σ=11ni=1n(xixˉ)2+eps\frac{1}\sigma = \frac{1}{\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_i- \bar{x})^2 + eps}}

aclnnBatchNormStatsGetWorkspaceSize

  • 参数说明:

    • input(aclTensor *, 计算输入): 输入Tensor,Device侧的aclTensor,数据类型支持FLOAT、FLOAT16,支持非连续的Tensor,支持的shape和格式有:2维(对应的格式为NC),3维(对应的格式为NCL),4维(对应的格式为NCHW),5维(对应的格式为NCDHW),6-8维(对应的格式为ND,其中第2维固定为channel轴)。
    • eps(double, 计算输入): 为数值稳定性添加到分母中的值,double类型的值。
    • meanOut(aclTensor *, 计算输入): 输出均值,Device侧的aclTensor,数据类型支持FLOAT,当输入数据的类型为FLOAT16时,会转成FLOAT进行处理,数据格式支持ND。
    • invstdOut(aclTensor *, 计算输入): 输出标准差倒数,Device侧的aclTensor,数据类型支持FLOAT,input为FLOAT16时,会转成FLOAT进行处理,数据格式支持ND。
    • workspaceSize(uint64_t *, 出参): 返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor **, 出参): 返回op执行器,包含了算子计算流程。
  • 返回值:

    aclnnStatus: 返回状态码,具体参见aclnn返回码

第一段接口完成入参校验,出现以下场景时报错:
返回161001 (ACLNN_ERR_PARAM_NULLPTR):1. 传入的input, meanOut或invstdOut是空指针。
返回161002 (ACLNN_ERR_PARAM_INVALID):1. input, meanOut和invstdOut的数据类型和数据格式不在支持的范围之内。
                                      2. input维度小于2或者大于8,meanOut和invstdOut维度不为1。
                                      3. mean或invstd的shape与input的channel轴不一致。

aclnnBatchNormStats

  • 参数说明:

    • workspace(void *, 入参): 在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参): 在Device侧申请的workspace大小,由第一段接口aclnnBatchNormStatsGetWorkspaceSize获取。
    • executor(aclOpExecutor *, 入参): op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参): 指定执行任务的AscendCL Stream流。
  • 返回值:

    aclnnStatus: 返回状态码,具体参见aclnn返回码

约束与限制

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_batch_norm_stats.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请Device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

  // 调用aclrtMemcpy将Host侧数据拷贝到Device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  // check根据自己的需要处理
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> inputShape = {2, 3};
  std::vector<int64_t> outShape = {3,};
  void* inputDeviceAddr = nullptr;
  void* meanOutDeviceAddr = nullptr;
  void* invstdOutDeviceAddr = nullptr;
  aclTensor* input = nullptr;
  aclTensor* meanOut = nullptr;
  aclTensor* invstdOut = nullptr;
  std::vector<float> inputHostData = {1, 2, 3, 4, 5, 6};
  std::vector<float> meanOutHostData = {0, 0, 0};
  std::vector<float> invstdOutHostData = {0, 0, 0};
  double eps = 1e-5;

  // 创建self aclTensor
  ret = CreateAclTensor(inputHostData, inputShape, &inputDeviceAddr, aclDataType::ACL_FLOAT, &input);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建meanOut aclTensor
  ret = CreateAclTensor(meanOutHostData, outShape, &meanOutDeviceAddr, aclDataType::ACL_FLOAT, &meanOut);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建invstdOut aclTensor
  ret = CreateAclTensor(invstdOutHostData, outShape, &invstdOutDeviceAddr, aclDataType::ACL_FLOAT, &invstdOut);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // aclnnBatchNormStats接口调用示例
  // 3. 调用CANN算子库API,需要修改为具体的API名称
  // 调用aclnnBatchNormStats第一段接口
  ret = aclnnBatchNormStatsGetWorkspaceSize(input, eps, meanOut, invstdOut, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnBatchNormStatsGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnBatchNormStats第二段接口
  ret = aclnnBatchNormStats(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnBatchNormStats failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将Device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape);
  std::vector<float> meanOutData(size, 0);
  ret = aclrtMemcpy(meanOutData.data(), meanOutData.size() * sizeof(meanOutData[0]), meanOutDeviceAddr,
                    size * sizeof(meanOutData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("mean result[%ld] is: %f\n", i, meanOutData[i]);
  }
  std::vector<float> invstdOutData(size, 0);
  ret = aclrtMemcpy(invstdOutData.data(), invstdOutData.size() * sizeof(invstdOutData[0]), invstdOutDeviceAddr,
                    size * sizeof(invstdOutData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("mean result[%ld] is: %f\n", i, invstdOutData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(input);
  aclDestroyTensor(meanOut);
  aclDestroyTensor(invstdOut);

  // 7. 释放device资源,需要根据具体API的接口定义修改
  aclrtFree(inputDeviceAddr);
  aclrtFree(meanOutDeviceAddr);
  aclrtFree(invstdOutDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}
搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词