昇腾社区首页
中文
注册

aclnnBatchNormBackward

支持的产品型号

  • Atlas 训练系列产品。
  • Atlas A2训练系列产品/Atlas 800I A2推理产品。

接口原型

每个算子分为undefined,必须先调用“aclnnBatchNormBackwardGetWorkspaceSize”接口获取入参并根据流程计算所需workspace大小,再调用“aclnnBatchNormBackward”接口执行计算。

  • aclnnStatus aclnnBatchNormBackwardGetWorkspaceSize(const aclTensor *gradOut, const aclTensor *input, const aclTensor *weight, const aclTensor *runningMean, const aclTensor *runningVar, const aclTensor *saveMean, const aclTensor *saveInvstd, bool training, double eps, const aclBoolArray *outputMask, aclTensor *gradInput, aclTensor *gradWeight, aclTensor *gradBias, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnBatchNormBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

  • 算子功能: 正则化反向计算。
  • 计算公式:
lx^i=lyiγ\frac{\partial l}{\partial \hat{x}_i} = \frac{\partial l}{\partial y_i} \cdot γ lσB2=i=0mlx^i(xiμB)12(σB2+ε)3/2\frac{\partial l}{\partial σ^2_B} = \sum^m_{i=0}\frac{\partial l}{\partial \hat{x}_i} \cdot (x_i-μ_B) \cdot \frac{-1}{2}(σ^2_B + ε)^{-3/2} lμB=(i=0mlx^i1σB2+ε)+lσB2i=0m2(xiμB)m\frac{\partial l}{\partial μ_B} = (\sum^m_{i=0}\frac{\partial l}{\partial \hat{x}_i} \cdot \frac{-1}{\sqrt{σ^2_B + ε}}) + \frac{\partial l}{\partial σ^2_B} \cdot \frac{\sum^m_{i=0}-2(x_i-μ_B)}{m} lxi=lx^i1σB2+ε)+lσB22(xiμB)m+lμB1m\frac{\partial l}{\partial x_i} = \frac{\partial l}{\partial \hat{x}_i} \cdot \frac{1}{\sqrt{σ^2_B + ε}}) + \frac{\partial l}{\partial σ^2_B} \cdot \frac{2(x_i-μ_B)}{m} + \frac{\partial l}{\partial μ_B} \cdot \frac{1}{m} lγ=i=0mlyix^\frac{\partial l}{\partial γ} = \sum^m_{i=0} \frac{\partial l}{\partial y_i} \cdot \hat{x} lβ=i=0mlyi\frac{\partial l}{\partial β} = \sum^m_{i=0} \frac{\partial l}{\partial y_i}

aclnnBatchNormBackwardGetWorkspaceSize

  • 参数说明:

    • gradOut(const aclTensor *, 计算输入): 梯度Tensor,Device侧的aclTensor,数据类型支持FLOAT,FLOAT16,BFLOAT16(仅Atlas A2训练系列产品/Atlas 800I A2推理产品支持),支持undefined,支持的shape和格式有:2维(对应的格式为NC),3维(对应的格式为NCL),4维(对应的格式为NCHW),5维(对应的格式为NCDHW),6-8维(对应的格式为ND,其中第2维固定为channel轴)。
    • input(const aclTensor *, 计算输入): 正向的输入Tensor,Device侧的aclTensor,数据类型支持FLOAT,FLOAT16,BFLOAT16(仅Atlas A2训练系列产品/Atlas 800I A2推理产品支持),支持undefined,支持的shape和格式有:2维(对应的格式为NC),3维(对应的格式为NCL),4维(对应的格式为NCHW),5维(对应的格式为NCDHW),6-8维(对应的格式为ND,其中第2维固定为channel轴)。
    • weight(const aclTensor *, 计算输入): 权重Tensor,Device侧的aclTensor,数据类型仅支持FLOAT,支持undefinedundefined为ND。shape为1维,长度与input入参中channel轴的长度相等。
    • runningMean(const aclTensor *, 计算输入): 训练期间计算的平均值,Device侧的aclTensor数据类型仅支持FLOAT,支持undefinedundefined为ND。shape为1维,长度与input入参中channel轴的长度相等。
    • runningVar(const aclTensor *, 计算输入): 训练期间计算的方差,Device侧的aclTensor,数据类型仅支持FLOAT,支持undefinedundefined为ND。shape为1维,长度与input入参中channel轴的长度相等。
    • saveMean(const aclTensor *, 计算输入): 保存的均值,Device侧的aclTensor,数据类型仅支持FLOAT,支持undefinedundefined为ND。shape为1维,长度与input入参中channel轴的长度相等。
    • saveInvstd(const aclTensor *, 计算输入): 保存的标准差的倒数,Device侧的aclTensor,数据类型仅支持FLOAT,支持undefinedundefined为ND。shape为1维,长度与input入参中channel轴的长度相等。
    • training(bool, 计算输入): Host侧的bool值,标记是否训练场景,true表示训练场景,false表示推理场景。
    • eps(double *, 计算输入): Host侧的double值。添加到方差中的值,以避免出现除以零的情况。
    • outputMask(const aclBoolArray *, 计算输入): aclBoolArray类型,输出的掩码。
    • gradInput(aclTensor *, 出参): 可选输出,若outputMask[0]为True,则需要输出,否则不输出;输入Tensor的梯度,Device侧的aclTensor,数据类型支持FLOAT,FLOAT16,BFLOAT16(仅Atlas A2训练系列产品/Atlas 800I A2推理产品支持),支持undefined,支持的shape和格式有:2维(对应的格式为NC),3维(对应的格式为NCL),4维(对应的格式为NCHW),5维(对应的格式为NCDHW),6-8维(对应的格式为ND,其中第2维固定为channel轴)。
    • gradWeight(aclTensor *, 出参): 可选输出,若outputMask[1]为True,则需要输出,否则不输出;缩放参数的梯度,Device侧的aclTensor,数据类型仅支持FLOAT,支持undefinedundefined为ND。shape为1维,长度与input入参中channel轴的长度相等。
    • gradBias(aclTensor *, 出参): 可选输出,若outputMask[2]为True,则需要输出,否则不输出;偏置参数的梯度,Device侧的aclTensor,数据类型仅支持FLOAT,支持undefinedundefined为ND。shape为1维,长度与input入参中channel轴的长度相等。
    • workspaceSize(uint64_t *, 出参): 返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor **, 出参): 返回op执行器,包含了算子计算流程。
  • 返回值:

    aclnnStatus: 返回状态码,具体参见undefined

[object Object]

aclnnBatchNormBackward

  • 参数说明:

    • workspace(void *, 入参): 在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参): 在Device侧申请的workspace大小,由第一段接口aclnnBatchNormBackwardGetWorkspaceSize获取。
    • executor(aclOpExecutor *, 入参): op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参): 指定执行任务的AscendCL Stream流。
  • 返回值:

    aclnnStatus: 返回状态码,具体参见undefined

约束与限制

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考undefined

[object Object]