aclnnInplaceScatterValue
接口原型
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
- 第一段接口:aclnnStatus aclnnInplaceScatterValueGetWorkspaceSize(aclTensor *selfRef, int64_t dim, const aclTensor *index, const aclScalar *value, int64_t reduce, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnInplaceScatterValue(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
- 算子功能: 将value中的值按指定轴方向dim和对应位置关系index逐个填入张量selfRef中。value会被broadcast成和index的shape一致的tensor src进行Scatter计算,具体参见aclnnScatter。
- 示例:
对于一个3D tensor,selfRef会按照不同规则进行更新:
selfRef[index[i][j][k]][j][k] = src[i][j][k] # 如果dim == 0 selfRef[i][index[i][j][k]][k] = src[i][j][k] # 如果dim == 1 selfRef[i][j][index[i][j][k]] = src[i][j][k] # 如果dim == 2
在计算时需要满足以下要求:
- selfRef、index的维度数量必须相同。
- 对于每一个维度d,如果d!=dim,需满足index.size(d)≤selfRef.size(d)。
- dim的值大小必须在[-selfRef的维度数量, selfRef的维度数量-1]之间。
- selfRef的维度数应该≤8。
- index中对应维度dim的值必须在[0, selfRef.size(dim)-1]之间。
aclnnInplaceScatterValueGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnInplaceScatterValueGetWorkspaceSize(aclTensor *selfRef, int64_t dim, const aclTensor *index, const aclScalar *value, int64_t reduce, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- selfRef:Device侧的aclTensor,输入/输出张量,数据类型支持UINT8、INT8、INT16、INT32、INT64、BOOL、FLOAT16、FLOAT、DOUBLE、COMPLEX64、COMPLEX128。selfRef的维度数量需要与index相同。支持空Tensor,支持非连续的Tensor。数据格式支持ND。
- dim:Host侧的整型,用来Scatter的维度。数据类型支持INT64,取值范围是[-selfRef.dim(), selfRef.dim()-1]。
- index:Device侧的aclTensor。数据类型支持INT32、INT64。index的维度数量需要与selfRef相同。支持空Tensor, 支持非连续的Tensor。数据格式支持ND。
- value:Host侧的aclScalar,用于填充的值,数据类型支持UINT8、INT8、INT16、INT32、INT64、BOOL、FLOAT16、FLOAT、DOUBLE、COMPLEX64、COMPLEX128。当value为COMPLEX时,selfRef也必须为COMPLEX类型。
- reduce:选择应用的reduction操作。目前支持的操作以及对应的int值分别为 (add, 1), (mul, 2),(none, 0):
- 0:表示替换操作,将value按照index替换到selfRef的对应位置。
- 1:表示累加操作,将value按照index累加到selfRef的对应位置。
- 2:表示累乘操作,将value按照index累乘到selfRef的对应位置。
- workspaceSize:返回用户需要在Device侧申请的workspace大小。
- executor:返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
aclnnInplaceScatterValue
- 接口定义:
aclnnStatus aclnnInplaceScatterValue(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnInplaceScatterValueGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_scatter.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateContext(context, deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetCurrentContext(*context);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/context/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtContext context;
aclrtStream stream;
auto ret = Init(deviceId, &context, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
int64_t dim = 1;
int64_t reduce = 1;
std::vector<int64_t> selfRefShape = {3, 4};
std::vector<int64_t> indexShape = {2, 3};
void* selfRefDeviceAddr = nullptr;
void* indexDeviceAddr = nullptr;
aclTensor* selfRef = nullptr;
aclTensor* index = nullptr;
aclScalar* value = nullptr;
std::vector<float> selfRefHostData = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
std::vector<int64_t> indexHostData = {0, 0, 2, 1, 0, 2};
float Value = 1.2f;
// 创建selfRef aclTensor
ret = CreateAclTensor(selfRefHostData, selfRefShape, &selfRefDeviceAddr, aclDataType::ACL_FLOAT, &selfRef);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建index aclTensor
ret = CreateAclTensor(indexHostData, indexShape, &indexDeviceAddr, aclDataType::ACL_INT64, &index);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建value aclScalar
value = aclCreateScalar(&Value, aclDataType::ACL_FLOAT);
CHECK_RET(value != nullptr, return ret);
// 3. 调用CANN算子库API,需要修改为具体的API名称
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnInplaceScatterValue第一段接口
ret = aclnnInplaceScatterValueGetWorkspaceSize(selfRef, dim, index, value, reduce, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnInplaceScatterValueGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnInplaceScatterValue第二段接口
ret = aclnnInplaceScatterValue(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnInplaceScatterValue failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(selfRefShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), selfRefDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(selfRef);
aclDestroyTensor(index);
aclDestroyScalar(value);
return 0;
}
父主题: NN类算子接口