aclnnScatter
接口原型
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
- 第一段接口:aclnnStatus aclnnScatterGetWorkspaceSize(const aclTensor *self, int64_t dim, const aclTensor *index, const aclTensor *src, int64_t reduce, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnScatter(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
功能描述
- 算子功能:将源张量src中的值按指定轴方向和对应的位置关系逐个填入张量self中。
- 示例:
对于一个3D tensor,self会按照如下规则进行更新:
self[index[i][j][k]][j][k] = src[i][j][k] # 如果dim == 0 self[i][index[i][j][k]][k] = src[i][j][k] # 如果dim == 1 self[i][j][index[i][j][k]] = src[i][j][k] # 如果dim == 2
在计算时需要满足以下要求:
- self、index和src的维度数量必须相同。
- 对于每一个维度d,需满足index.size(d)≤src.size(d)。
- 对于每一个维度d,如果d!=dim,需满足index.size(d)≤self.size(d)。
- dim的值大小必须在[-self的维度数量, self的维度数量-1]之间。
- self的维度数应该≤8。
- index中对应维度dim的值必须在[0, self.size(dim)-1]之间。
aclnnScatterGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnScatterGetWorkspaceSize(const aclTensor *self, int64_t dim, const aclTensor *index, const aclTensor *src, int64_t reduce, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- self:Device侧的aclTensor,数据类型支持UINT8、INT8、INT16、INT32、INT64、BOOL、FLOAT16、FLOAT32、DOUBLE、COMPLEX64、COMPLEX128。self的维度数量需要与index、src相同,并且不超过8。self的数据类型需要与src一致。支持空Tensor,支持非连续的Tensor。数据格式支持ND。
- dim:指定scatter的维度,数据类型为INT64,取值范围为[-self.dim(), self.dim()-1]。
- index:Device侧的aclTensor,数据类型支持INT32、INT64。index的维度数量需要与self、src相同。支持空Tensor,支持非连续的Tensor。数据格式支持ND。
- src:Device侧的aclTensor,数据类型支持UINT8、INT8、INT16、INT32、INT64、BOOL、FLOAT16、FLOAT32、DOUBLE、COMPLEX64、COMPLEX128。src的维度数量需要与self、index相同。src的数据类型需要与self一致。支持空Tensor,支持非连续的Tensor。数据格式支持ND。
- reduce:选择应用的reduction操作。可选的操作选项以及对应的int值为 (add, 1), (mul, 2),(none, 0):
- 0:表示替换操作,将src中对应位置的值按照index替换到out中的对应位置。
- 1:表示累加操作,将src中对应位置的值按照index累加到out的对应位置。
- 2:表示累乘操作,将src中对应位置的值按照index累乘到out的对应位置。
- out: Device侧的aclTensor,数据类型支持UINT8、INT8、INT16、INT32、INT64、BOOL、FLOAT16、FLOAT32、DOUBLE、COMPLEX64、COMPLEX128。数据格式、数据类型、shape需要与self一致。
- workspaceSize:返回用户需要在Device侧申请的workspace大小。
- executor:返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的self、index、src或out是空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- self、index、src或out的数据类型不在支持范围内。
- self、src、out的数据类型不一样。
- self、index、src的维度数不一致。
- self和out的shape不一致。
- self、index、src的shape不满足限制:对于每一个维度d,需满足index.size(d)≤src.size(d);若d!=dim,需满足index.size(d)<=self.size(d)。
- dim值不在支持的范围内。
- self的维度数超过8。
aclnnScatter
- 接口定义:
aclnnStatus aclnnScatter(void *workspace、uint64_t workspaceSize、aclOpExecutor *executor、const aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnScatterGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
#include <iostream> #include <vector> #include "acl/acl.h" #include "aclnnop/aclnn_scatter.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t>& shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) { // 固定写法,AscendCL初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateContext(context, deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret); ret = aclrtSetCurrentContext(*context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } int main() { // 1. (固定写法)device/context/stream初始化,参考AscendCL对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtContext context; aclrtStream stream; auto ret = Init(deviceId, &context, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 int64_t dim = 1; int64_t reduce = 1; std::vector<int64_t> selfShape = {3, 4}; std::vector<int64_t> indexShape = {2, 3}; std::vector<int64_t> srcShape = {2, 3}; std::vector<int64_t> outShape = {3, 4}; void* selfDeviceAddr = nullptr; void* indexDeviceAddr = nullptr; void* srcDeviceAddr = nullptr; void* outDeviceAddr = nullptr; aclTensor* self = nullptr; aclTensor* index = nullptr; aclTensor* src = nullptr; aclTensor* out = nullptr; std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}; std::vector<int64_t> indexHostData = {0, 0, 2, 1, 0, 2}; std::vector<float> srcHostData = {-1, -2, -3, -4, -5, -6}; std::vector<float> outHostData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // 创建self aclTensor ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建index aclTensor ret = CreateAclTensor(indexHostData, indexShape, &indexDeviceAddr, aclDataType::ACL_INT64, &index); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建src aclTensor ret = CreateAclTensor(srcHostData, srcShape, &srcDeviceAddr, aclDataType::ACL_FLOAT, &src); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建out aclTensor ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out); CHECK_RET(ret == ACL_SUCCESS, return ret); // 3. 调用CANN算子库API,需要修改为具体的API名称 uint64_t workspaceSize = 0; aclOpExecutor* executor; // 调用aclnnScatter第一段接口 ret = aclnnScatterGetWorkspaceSize(self, dim, index, src, reduce, out, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnScatterGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void* workspaceAddr = nullptr; if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } // 调用aclnnScatter第二段接口 ret = aclnnScatter(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnScatter failed. ERROR: %d\n", ret); return ret); // 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改 auto size = GetShapeSize(outShape); std::vector<float> resultData(size, 0); ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]); } // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改 aclDestroyTensor(self); aclDestroyTensor(index); aclDestroyTensor(src); aclDestroyTensor(out); return 0; }
父主题: NN类算子接口