昇腾社区首页
中文
注册

aclnnBatchNormStats

接口原型

每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:

  • 第一段接口:aclnnStatus aclnnBatchNormStatsGetWorkspaceSize(const aclTensor *input, double eps, aclTensor *meanOut, aclTensor *invstdOut, uint64_t *workspaceSize, aclOpExecutor **executor)
  • 第二段接口:aclnnStatus aclnnBatchNormStats(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

功能描述

  • 算子功能:计算单卡输入数据的均值和标准差的倒数。多卡BatchNorm场景下实现SyncBatchNorm,需通过aclnnBatchNormStats、aclnnBatchNormGatherStatsWithCountsaclnnBatchNormElemt算子组合实现。

    BatchNorm的性能和BatchSize相关,BatchSize越大,BatchNorm的统计量也会越准。对于目标检测类似的任务,占用显存较高,一张显卡往往只能使用较少的图片(比如2张)来训练,这就导致BN的表现变差。为解决该问题,需要实现SyncBatchNorm,即所有卡共享同一个BN,得到全局的统计量。

  • 计算公式:
    • 均值:

    • 标准差倒数:

aclnnBatchNormStatsGetWorkspaceSize

  • 接口定义:

    aclnnStatus aclnnBatchNormStatsGetWorkspaceSize(const aclTensor *input, double eps, aclTensor *meanOut, aclTensor *invstdOut, uint64_t *workspaceSize, aclOpExecutor **executor)

  • 参数说明:
    • input:输入张量,Device侧的aclTensor,数据类型支持FLOAT、FLOAT16。支持非连续的Tensor,数据格式五维及以下支持NCDHW、NCHW、NCL、NC, 六维到八维支持ND。
    • eps:用于防止分母为0,DOUBLE类型数值。
    • meanOut:输出均值,Device侧的aclTensor,数据类型支持FLOAT,数据格式支持ND。当输入为FLOAT16时,也会转成FLOAT处理。
    • invstdOut:输出标准差倒数,Device侧的aclTensor,数据类型支持FLOAT,数据格式支持ND。当输入为FLOAT16时,也会转成FLOAT处理。
    • workspaceSize:返回用户需要在Device侧申请的workspace大小。
    • executor:返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:

    • 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的input、meanOut或invstdOut是空指针。
    • 返回161002(ACLNN_ERR_PARAM_INVALID):
      • input、meanOut和invstdOut的数据类型不在支持的范围内。 、
      • input维度小于2或大于8,meanOut和invstdOut维度不为1。

aclnnBatchNormStats

  • 接口定义:

    aclnnStatus aclnnBatchNormStats(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

  • 参数说明:
    • workspace:在Device侧申请的workspace内存起址。
    • workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnBatchNormStatsGetWorkspaceSize获取。
    • executor:op执行器,包含了算子计算流程。
    • stream:指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

调用示例

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#include <iostream> 
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_batch_norm_stats.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateContext(context, deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetCurrentContext(*context);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/context/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtContext context;
  aclrtStream stream;
  auto ret = Init(deviceId, &context, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> inputShape = {2, 3};
  std::vector<int64_t> outShape = {3,};
  void* inputDeviceAddr = nullptr;
  void* meanOutDeviceAddr = nullptr;
  void* invstdOutDeviceAddr = nullptr;
  aclTensor* input = nullptr;
  aclTensor* meanOut = nullptr;
  aclTensor* invstdOut = nullptr;
  std::vector<float> inputHostData = {1, 2, 3, 4, 5, 6};
  std::vector<float> meanOutHostData = {0, 0, 0};
  std::vector<float> invstdOutHostData = {0, 0, 0};
  // 创建self aclTensor
  ret = CreateAclTensor(inputHostData, inputShape, &inputDeviceAddr, aclDataType::ACL_FLOAT, &input);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建meanOut aclTensor
  ret = CreateAclTensor(meanOutHostData, outShape, &meanOutDeviceAddr, aclDataType::ACL_FLOAT, &meanOut);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建invstdOut aclTensor
  ret = CreateAclTensor(invstdOutHostData, outShape, &invstdOutDeviceAddr, aclDataType::ACL_FLOAT, &invstdOut);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API,需要修改为具体的API名称
  double eps = 1e-5;
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnBatchNormStats第一段接口
  ret = aclnnBatchNormStatsGetWorkspaceSize(input, eps, meanOut, invstdOut, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnBatchNormStatsGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnBatchNormStats第二段接口
  ret = aclnnBatchNormStats(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnBatchNormStats failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape);
  std::vector<float> meanOutData(size, 0);
  ret = aclrtMemcpy(meanOutData.data(), meanOutData.size() * sizeof(meanOutData[0]), meanOutDeviceAddr, size * sizeof(meanOutData[0]),
                    ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("mean result[%ld] is: %f\n", i, meanOutData[i]);
  }
  std::vector<float> invstdOutData(size, 0);
  ret = aclrtMemcpy(invstdOutData.data(), invstdOutData.size() * sizeof(invstdOutData[0]), invstdOutDeviceAddr, size * sizeof(invstdOutData[0]),
                    ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("mean result[%ld] is: %f\n", i, invstdOutData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(input);
  aclDestroyTensor(meanOut);
  aclDestroyTensor(invstdOut);
  return 0;
}