设置网络模型的精度模式。
算子支持float16和float32数据类型时,强制选择float16。
保持原图精度。
bfloat16类型仅在以下产品型号支持:
Atlas A2训练系列产品/Atlas 800I A2推理产品
如果网络模型中存在部分算子,并且该算子实现不支持float32,比如某算子仅支持float16类型,则该参数不生效,仍然使用支持的float16;如果该算子不支持float32,且又配置了黑名单(precision_reduce = false),则会使用float32的AI CPU算子;如果AI CPU算子也不支持,则执行报错。
表示使用混合精度float16和float32数据类型来处理神经网络。针对网络模型中float32数据类型的算子,按照内置的优化策略,自动将部分float32的算子降低精度到float16,从而在精度损失很小的情况下提升系统性能并减少内存使用。
若配置了该种模式,则可以在OPP软件包安装路径${INSTALL_DIR}/opp/built-in/op_impl/ai_core/tbe/config/<soc_version>/aic-<soc_version>-ops-info.json内置优化策略文件中查看“precision_reduce”参数的取值:
表示使用混合精度bfloat16和float32数据类型来处理神经网络。针对网络模型中float32数据类型的算子,按照内置的优化策略,自动将部分float32的算子降低精度到bfloat16,从而在精度损失很小的情况下提升系统性能并减少内存使用;如果算子不支持bfloat16和float32,则使用AI CPU算子进行计算;如果AI CPU算子也不支持,则执行报错。
若配置了该种模式,则可以在OPP软件包安装路径${INSTALL_DIR}/opp/built-in/op_impl/ai_core/tbe/config/<soc_version>/aic-<soc_version>-ops-info.json内置优化策略文件中查看“precision_reduce”参数的取值:
该选项仅在以下产品型号支持:
Atlas A2训练系列产品/Atlas 800I A2推理产品
参数默认值:fp16
所配置的精度模式不同,网络模型精度以及性能有所不同,具体为:
精度高低排序:origin>mixed_float16>fp16;性能优劣排序:fp16>=mixed_float16>origin
--precision_mode_v2=fp16
Atlas 200/300/500 推理产品
Atlas 推理系列产品
Atlas 训练系列产品
Atlas 200I/500 A2推理产品
Atlas A2训练系列产品/Atlas 800I A2推理产品
混合精度场景下,如果版本升级后出现推理性能下降,建议使用AOE工具重新进行调优,调优完成后,通过--op_bank_path参数加载算子调优后自定义知识库的路径,然后重新进行模型转换。
算子调优详情请参见《AOE工具使用指南》。