指定模型输入数据的shape。
设置shape分档场景,需要配合使用--dynamic_batch_size(设置BatchSize档位)或--dynamic_image_size(设置分辨率档位)或--dynamic_dims(设置指定维度档位)参数。
参数值:
设置--input_shape参数时,将对应维度值设置为-1,同时配合使用--dynamic_batch_size(设置BatchSize档位)或--dynamic_image_size(设置分辨率档位)或--dynamic_dims(设置指定维度档位)参数。
设置--input_shape参数时,可将对应维度的值设置为范围,例如1~10。
如果用户不想指定维度的的范围或具体取值,则可以将其设置为-1,模型转换时该维度被解析为>=0的任意取值。
shape为标量的输入,可选配置,例如模型有两个输入,input_name1为标量,即shape为"[]"形式,input_name2输入shape为[n2,c2,h2,w2],则shape信息为"input_name1:;input_name2:n2,c2,h2,w2",指定的节点必须放在双引号中,不同输入之间使用英文分号分隔,input_name必须是转换前的网络模型中的节点名称;标量的输入如果配置,则配置为空。
如果模型输入中既有标量shape,又有支持动态分档的shape,则标量输入不能忽略,必须配置。例如模型有三个输入,分别为A:[-1,c1,h1,w1]、B:[]、C:[n2,c2,h2,w2],则shape信息为"A:-1,c1,h1,w1;B:;C:n2,c2,h2,w2",标量输入B必须配置。
参数值约束:
无。
--input_shape="input_0_0:1~10,32,208,208;input_1_0:16,64,100~208,100~208"
shape为标量的输入,可选配置。例如模型有两个输入,input_name1为标量,input_name2输入shape为[16,32,208,208],配置示例为:
--input_shape="input_name1:;input_name2:16,32,208,208"
上述示例中的input_name1为可选配置。
shape为标量的输入,必须配置。例如模型有三个输入,shape信息分别为A:[-1,32,208,208]、B:[]、C:[16,64,208,208],则配置示例为(A为动态分档输入,此处以设置BatchSize档位为例):
--input_shape="A:-1,32,208,208;B:;C:16,64,208,208" --dynamic_batch_size="1,2,4"
Atlas 200/300/500 推理产品
Atlas 推理系列产品
Atlas 训练系列产品
Atlas 200I/500 A2推理产品
Atlas A2训练系列产品/Atlas 800I A2推理产品
如果用户通过--input_shape设置了动态shape范围参数,同时又通过--insert_op_conf参数配置了AIPP功能,则AIPP输出的宽和高要在--input_shape所设置的范围内。
如果模型转换时通过该参数设置了shape的范围,使用应用工程进行模型推理时,需在aclmdlExecute接口之前,调用aclmdlSetDatasetTensorDesc接口,用于设置真实的输入Tensor描述信息(输入shape范围);模型执行之后,调用aclmdlGetDatasetTensorDesc接口获取模型动态输出的Tensor描述信息;再进一步调用aclTensorDesc下的操作接口获取输出Tensor数据占用的内存大小、Tensor的Format信息、Tensor的维度信息等。