设置网络模型的精度模式。
表示网络模型中算子支持float16和float32时,强制选择float16。
表示保持原图精度。如果原图中部分算子精度为float16,但NPU中该部分算子实现不支持float16、仅支持float32,则系统内部会自动采用高精度float32;如果原图中部分算子精度为float32,但NPU中该部分算子的实现不支持float32类型、仅支持float16类型,则不能使用该参数值,系统不支持使用低精度。
如果网络模型中存在部分算子,并且该算子实现不支持float32,比如某算子仅支持float16类型,则该参数不生效,仍然使用支持的float16;如果该算子不支持float32,且又配置了黑名单(precision_reduce = false),则会使用float32的AI CPU算子。
表示使用混合精度float16和float32数据类型来处理神经网络。针对网络模型中float32数据类型的算子,按照内置的优化策略,自动将部分float32的算子降低精度到float16,从而在精度损失很小的情况下提升系统性能并减少内存使用。
若配置了该种模式,则可以在OPP软件包安装路径${INSTALL_DIR}/opp/built-in/op_impl/ai_core/tbe/config/<soc_version>/aic-<soc_version>-ops-info.json内置优化策略文件中查看“precision_reduce”参数的取值:
表示使用混合精度bfloat16和float32数据类型来处理神经网络。针对网络模型中float32数据类型的算子,按照内置的优化策略,自动将部分float32的算子降低精度到bfloat16,从而在精度损失很小的情况下提升系统性能并减少内存使用。
若配置了该种模式,则可以在OPP软件包安装路径${INSTALL_DIR}/opp/built-in/op_impl/ai_core/tbe/config/<soc_version>/aic-<soc_version>-ops-info.json内置优化策略文件中查看“precision_reduce”参数的取值:
参数默认值:fp16
所配置的精度模式不同,网络模型精度以及性能有所不同,具体为:
精度高低排序:origin>mixed_float16>fp16
性能优劣排序:fp16>=mixed_float16>origin
--precision_mode_v2=fp16
Atlas 200/300/500 推理产品
Atlas 推理系列产品(Ascend 310P处理器)
Atlas 训练系列产品
Atlas A2训练系列产品
无。