编程范式

编程范式描述了算子实现的固定流程,基于编程范式进行编程,可以快速搭建算子实现的代码框架。

根据抽象硬件架构可以了解到,AI Core内部的执行单元异步并行地执行接收到的指令。如下图所示,从输入数据到输出数据需要经过3个阶段任务的处理(T1、T2、T3),多个执行单元并行处理,每个执行单元只会专注于一个任务的处理,会处理所有的数据分片。可以看出,流水线并行和工业生产中的流水线是类似的,每一个执行单元都可以看成是流水线上的节点,通过流水线并行的方式来提高计算效率:执行单元1完成对某个数据分片的处理后,将其加入到通信队列,执行单元2空闲时就会从队列中取出数据继续处理;可以类比为生产流水线中的工人只完成某一项固定工序,完成后就交由下一项工序负责人继续处理。
图1 流水线并行示意图

Ascend C编程范式就是这样一种流水线式的编程范式,把算子核内的处理程序,分成多个流水任务,通过队列(Queue)完成任务间通信和同步,并通过统一的资源管理模块(Pipe)来统一管理内存、事件等资源。

Vector编程范式

如上图所示,Vector编程范式把算子的实现流程分为3个基本任务:CopyIn,Compute,CopyOut。

上文中提到的VECIN/VECOUT是TPosition的概念。Ascend C管理不同层级的物理内存时,用一种抽象的逻辑位置(TPosition)来表达各级别的存储,代替了片上物理存储的概念,达到隐藏硬件架构的目的。除了VECIN/VECOUT,矢量编程中还会使用到VECCALC,一般在定义临时变量时使用此位置。TPosition与物理内存的映射关系请参考表1

从编程的角度来讲,具体流程(如下文的伪代码)和流程图如下:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
AscendC::TPipe pipe;   //创建全局的资源管理   
AscendC::TQue<AscendC::TPosition::VecIn, 1> queIn;  //创建CopyIn阶段的队列
AscendC::TQue<AscendC::TPosition::VecOut, 1> queOut; //创建CopyOut阶段的队列
// Init 阶段:
pipe.InitBuffer(queIn, 2, 1024);  // 开启double buffer,将待处理的数据一分为二,实现流水并行
pipe.InitBuffer(queOut, 2, 1024);
for-loop {
    //CopyIn 阶段{
    auto tensor = queIn.AllocTensor<half>();     //从Que上申请资源, 长度1024
    AscendC::DataCopy(tensor, gm, 1024);          //搬运数据从GM到VECIN
    queIn.EnQue(tensor); 
    }
    //Compute阶段{
    auto tensor = queIn.DeQue<half>();
    auto tensorOut = queOut.AllocTensor<half>();
    AscendC::Abs(tensorOut, tensor, 1024);
    queIn.FreeTensor(tensor);
    queOut.EnQue(tensorOut);
    }
    //CopyOut 阶段{
    auto tensor = queOut.DeQue<half>();
    AscendC::DataCopy(gmOut, tensor, 1024);
    queOut.FreeTensor(tensor);
    }
}

任务间数据传递使用到的内存、事件等资源统一由管理模块Pipe进行管理。如下所示的内存管理示意图,TPipe通过InitBuffer接口对外提供Queue内存初始化功能,开发者可以通过该接口为指定的Queue分配内存。

Queue队列内存初始化完成后,需要使用内存时,通过调用AllocTensor来为LocalTensor分配内存,当创建的LocalTensor完成相关计算无需再使用时,再调用FreeTensor来回收LocalTensor的内存。

图2 内存管理示意图

编程过程中使用到的临时变量内存同样通过Pipe进行管理。临时变量可以使用TBuf数据结构来申请指定TPosition上的存储空间。使用TBuf申请的内存空间只能参与计算,无法执行Queue队列的入队出队操作。具体的接口使用说明请参考TBuf

按照上述编程范式进行编程即可实现单核上数据的并行处理。需要处理的数据被切分成n片,每个并行任务(Stage1、2、3)需要依次完成n个数据切片的处理。Stage间的箭头表达数据间的依赖关系,比如Stage1(CopyIn)处理完第一个数据分片之后,Stage2(Compute)才能对该分片进行处理。

图3 流水任务示意图

上图中的流水任务运行起来的示意图如下,Progress1、2、3代表数据分片处理流程,从运行图中可以看出,对于同一片数据,Stage1、Stage2、Stage3之间的处理具有依赖关系,需要串行处理;不同的数据切片,同一时间点,可以有多个任务在并行处理,由此达到任务并行、提升性能的目的。

图4 流水任务运行示意图

Cube编程范式

Cube计算的典型数据流图如下所示:

和矢量编程范式一样,同样也使用逻辑位置(TPosition)来表达数据流,Cube编程范式中主要使用的逻辑位置定义如下:

TPosition与物理内存的映射关系请参考表1

Cube计算流程同样也可以理解为CopyIn、Compute、CopyOut这几个阶段,因为流程相对复杂,Matmul高阶API提供对此的高阶封装,简化了编程范式。

如上图所示:CopyIn阶段对应SetTensorASetTensorBSetBias接口;Compute阶段对应Iterate接口;CopyOut阶段对应GetTensorC接口。具体流程可参考如下示例:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
// 创建Matmul对象 创建对象时需要传入A、B、C、Bias的参数类型信息, 类型信息通过MatmulType来定义,包括:内存逻辑位置、数据格式、数据类型。
typedef MatmulType<TPosition::GM, CubeFormat::ND, half> aType; 
typedef MatmulType<TPosition::GM, CubeFormat::ND, half> bType; 
typedef MatmulType<TPosition::GM, CubeFormat::ND, float> cType; 
typedef MatmulType<TPosition::GM, CubeFormat::ND, float> biasType; 
Matmul<aType, bType, cType, biasType> mm; 

REGIST_MATMUL_OBJ(&pipe, GetSysWorkSpacePtr(), mm, &tiling); // 初始化
// CopyIn阶段:完成从GM到LocalMemory的搬运
mm.SetTensorA(gm_a);    // 设置左矩阵A
mm.SetTensorB(gm_b);    // 设置右矩阵B
mm.SetBias(gm_bias);    // 设置Bias
// Compute阶段:完成矩阵乘计算
while (mm.Iterate()) { 
    // CopyOut阶段:完成从LocalMemory到GM的搬运
    mm.GetTensorC(gm_c); 
}
// 结束矩阵乘操作
mm.End();

融合算子编程范式

支持Vector与Cube混合计算的算子称之为融合算子。Ascend C提供融合算子的编程范式,方便开发者基于该范式表达融合算子的数据流,快速实现自己的融合算子。

融合算子数据流指融合算子的输入输出在各存储位置间的流向。以一个典型的Cube和Vector融合算子为例,逻辑位置间的数据流向如下图所示(为了简化描述,没有列出bias):

基于Matmul高阶API的融合算子编程范式,对上述数据流简化表达如下:
图5 融合算子编程范式
  1. 初始化一个MatMul对象,将输入数据从Global Memory搬运到Cube核上。
  2. 进行MatMul内部的计算。
  3. 将MatMul的计算结果搬运到Vector核上。
  4. 进行Vector矢量计算。
  5. 将输出结果搬运到Global Memory上。

整个过程的示例代码如下(伪代码):

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
template<typename aType, typename bType, typename cType, typename biasType>
__aicore__ inline void MatmulLeakyKernel<aType, bType, cType, biasType>::Process()
{
    // 步骤1:初始化一个MatMul对象,将输入数据从Global Memory搬运到Cube核上。
    uint32_t computeRound = 0;
    REGIST_MATMUL_OBJ(&pipe, GetSysWorkSpacePtr(), matmulObj);
    matmulObj.Init(&tiling);
    matmulObj.SetTensorA(aGlobal);
    matmulObj.SetTensorB(bGlobal);
    matmulObj.SetBias(biasGlobal);
    
    while (matmulObj.template Iterate<true>()) { // 步骤2:进行MatMul内部的计算。
        // 步骤3:将MatMul的计算结果搬运到Vector核上。
        reluOutLocal = reluOutQueue_.AllocTensor<cType>();
        matmulObj.template GetTensorC<true>(reluOutLocal, false, true);
       // 步骤4:进行Vector矢量计算。
        AscendC::LeakyRelu(reluOutLocal, reluOutLocal, (cType)alpha, tiling.baseM * tiling.baseN);
        reluOutQueue_.EnQue(reluOutLocal);
        // 步骤5:将输出结果搬运到Global Memory上
        reluOutQueue_.DeQue<cType>();
        ...
        AscendC::DataCopy(cGlobal[startOffset], reluOutLocal, copyParam);
        reluOutQueue_.FreeTensor(reluOutLocal);

        computeRound++;
    }
    matmulObj.End();
}