AscendIndexSQ
小库算法AscendIndexSQ可以根据一组数据进行训练并生成合适的量化函数,对于输入的float32的特征向量,AscendIndexSQ对其量化为Int8类型的特征向量并存储在Device侧以进一步压缩存储空间,在执行向量比对时,将Int8类型的向量反量化为原始的特征向量执行后续的计算,典型AscendIndexSQ的样例参考如下。
#include <faiss/ascend/AscendIndexSQ.h>
#include <iostream>
using namespace std;
int main(int argc, char **argv)
{
const size_t dim = 512;
const size_t ntotal = 10000;
vector<float> data(dim * ntotal);
for (size_t i = 0; i < data.size(); i++) {
data[i] = drand48();
}
const size_t k = 100;
const size_t searchNum = 100;
vector<float> dist(k * searchNum);
vector<long> indices(k * searchNum);
cout << "Search data set successfully." << endl;
faiss::ascend::AscendIndexSQ *index = nullptr;
try {
faiss::ascend::AscendIndexSQConfig chipConf{0};
index = new faiss::ascend::AscendIndexSQ(dim, faiss::ScalarQuantizer::QuantizerType::QT_8bit, faiss::METRIC_L2, chipConf);
index->train(ntotal, data.data());
index->add(ntotal, data.data());
index->search(searchNum, data.data(), k, dist.data(), indices.data());
} catch (...) {
cout << "Exception caught!" << endl;
delete index;
return -1;
}
delete index;
cout << "Search finished successfully" << endl;
return 0;
}
父主题: 代码参考