使用指导
使用限制
使用Atlas 300I Duo卡的推理服务场景,推理请求的后处理参数不支持top_k。如果并发发送推理(包括EndPoint提供的RESTfull接口和Engine提供的Forward接口),并且部分推理请求的后处理参数设置了top_k,部分请求后处理参数不设置top_k,会造成推理服务异常,导致后续推理请求执行失败,需要重启推理服务。
场景说明
- MindIE Server提供EndPoint模块对推理服务化协议和接口封装,兼容Triton/OpenAI/TGI/vLLM等第三方框架接口。使用单节点安装模式安装MindIE Server之后,用户使用http/https客户端(Linux curl命令,Postman工具等)发送http/https请求,即可调用EndPoint提供的接口。
- MindIE Server通过Engine模块提供C++接口给客户,客户可以基于C++接口做二次集成开发。
Endpoint RESTfull接口使用说明
http/https请求的URL的IP地址和端口号在config.json中进行配置,详情请参见表3。
- 以Linux curl工具发送generate请求,URL请求格式如下:
- 操作类型:POST
- URL:http[s]://i{ip}:{port}/generate
- 未开启https,发送推理请求:
curl -H "Accept: application/json" -H "Content-type: application/json" -X POST -d '{ "inputs": "My name is Olivier and I", "parameters": { "details": true, "do_sample": true, "repetition_penalty": 1.1, "return_full_text": false, "seed": null, "temperature": 1, "top_n_tokens": 5, "top_p": 0.99 }, "stream": false }' http://{ip}:{port}/generate - https双向认证的请求方式示例:
curl --location --request POST 'https://{ip}:{port}/generate' \ --header 'Content-Type: application/json' \ --cacert /home/runs/static_conf/ca/ca.pem \ --cert /home/runs/static_conf/cert/client.pem \ --key /home/runs/static_conf/cert/client.key.pem \ --data-raw '{ "inputs": "My name is Olivier and I", "parameters": { "best_of": 1, "decoder_input_details": false, "details": false, "do_sample": true, "max_new_tokens": 20, "repetition_penalty": 2, "return_full_text": false, "seed": 12, "stop": [ "photographer" ], "temperature": 0.1, "top_k": 1, "top_n_tokens": 5, "top_p": 0.9, "truncate": 1024, "typical_p": 0.95, "watermark": true }, "stream": true }'
- --cacert:验签证书文件路径。
- ca.pem为MindIE-Server服务端证书的验签证书/根证书。
- --cert: 客户端证书文件路径。
- client.pem为客户端证书。
- --key:客户端私钥文件路径。
- client.key.pem为客户端证书私钥(未加密,建议采用加密密钥)。
请用户根据实际情况对相应参数进行修改。
API |
接口类型 |
URL |
说明 |
支持框架 |
|---|---|---|---|---|
Server Live |
GET |
/v2/health/live |
检查服务器是否在线。 |
Triton |
Server Ready |
GET |
/v2/health/ready |
检查服务器是否准备。 |
Triton |
Model Ready |
GET |
/v2/models/${MODEL_NAME}[/versions/${MODEL_VERSION}]/ready |
检查模型是否准备。 |
Triton |
health |
GET |
/health |
服务健康检查。 |
TGI/vLLM |
查询TGI EndPoint信息 |
GET |
/info |
查询TGI EndPoint信息。 |
TGI |
slot统计 |
GET |
/v2/models/${MODEL_NAME}[/versions/${MODEL_VERSION}]/getSlotCount |
参考Triton格式,自定义的slot统计信息查询接口。 |
华为自研 |
API |
接口类型 |
URL |
说明 |
支持框架 |
|---|---|---|---|---|
models列表 |
GET |
/v1/models |
列举当前可用模型列表。 |
OpenAI |
model详情 |
GET |
/v1/models/{model} |
查询模型信息。 |
OpenAI |
服务元数据查询 |
GET |
/v2 |
获取服务元数据。 |
Triton |
模型元数据查询 |
GET |
/v2/models/${MODEL_NAME}[/versions/${MODEL_VERSION}] |
查询模型元数据信息。 |
Triton |
查询模型配置 |
GET |
/v2/models/${MODEL_NAME}[/versions/${MODEL_VERSION}]/config |
查询模型配置。 |
Triton |
API |
接口类型 |
URL |
说明 |
支持框架 |
|---|---|---|---|---|
推理任务 |
POST |
/ |
TGI推理接口,stream==false返回文本推理结果,stream==true返回流式推理结果。 |
TGI |
POST |
/generate |
TGI和vLLM的推理接口,通过请求参数来区分是哪种服务的接口。 |
TGI/vLLM |
|
POST |
/generate_stream |
TGI流式推理接口,使用Server-Sent Events格式返回结果。 |
TGI |
|
POST |
/v1/chat/completions |
OpenAI文本推理接口。 |
OpenAI |
|
POST |
/infer |
华为自研推理接口,支持文本/流式返回结果。 |
华为自研 |
|
POST |
/v2/models/${MODEL_NAME}[/versions/${MODEL_VERSION}]/infer |
Triton的token推理接口。 |
Triton |
|
POST |
/v2/models/${MODEL_NAME}[/versions/${MODEL_VERSION}]/stopInfer |
参考Triton接口定义,提供提前终止请求接口。 |
华为自研 |
|
POST |
/v2/models/${MODEL_NAME}[/versions/${MODEL_VERSION}]/generate |
Triton文本推理接口。 |
Triton |
|
POST |
/v2/models/${MODEL_NAME}[/versions/${MODEL_VERSION}]/generate_stream |
Triton流式推理接口。 |
Triton |
Engine模块提供C++接口
使用Engine模块提供C++接口,需要开发代码来集成,以下代码提供接口使用样例,仅供参考。
/*
* Copyright (c) Huawei Technologies Co., Ltd. 2023-2023. All rights reserved.
*/
#include <iostream>
#include <memory>
#include <map>
#include <thread>
#include <algorithm>
#include <wait.h>
#include "infer_engine.h"
#include "infer_request.h"
#include "metrics.h"
#include "data_loader.h"
#include "util.h"
#include "io_manager.h"
using namespace SimpleLLMInference;
using SC = std::chrono::steady_clock;
IOManager g_Manager;
Statistics g_Statistics;
std::map<std::string, Metrics> g_Metrics;
volatile int g_CompleteNum = false;
std::mutex g_Mutex;
std::mutex g_MetricsMutex;
static std::mutex g_ExitMtx;
static bool g_ProcessExit = false;
bool g_RecordOutput = false;
namespace SimpleLLMInference {
/**
*
* @param response
*/
Status ParseEosAttr(std::shared_ptr<InferenceResponse> &response, int64_t *flag, int64_t *outputLen)
{
InferenceResponse::Output *output;
auto status = response->ImmutableOutput("IBIS_EOS_ATTR", &output);
if (!status.IsOk()) {
return status;
}
auto *eosData = static_cast<int64_t *>(output->Buffer());
*flag = eosData[0];
*outputLen = eosData[1];
return Status(infrastructure::Error::Code::OK, "Success");
}
/**
* 解析返回的token id
* @param response
*/
Status ParseOutputId(std::shared_ptr<InferenceResponse> &response, std::vector<int64_t> &outputIds)
{
InferenceResponse::Output *output;
auto status = response->ImmutableOutput("OUTPUT_IDS", &output);
if (!status.IsOk()) {
return status;
}
if (outputIds.empty()) {
outputIds.reserve(128);
}
// 获取输出长度
auto len = output->Shape()[0];
auto *data = static_cast<int64_t *>(output->Buffer());
for (int i = 0; i < len; ++i) {
outputIds.push_back(data[i]);
}
return Status(infrastructure::Error::Code::OK, "Success");
}
/**
* 请求回调
* @param response
*/
void ResponseCallback(std::shared_ptr<InferenceResponse> &response)
{
auto reqId = response->GetRequestId().StringValue();
size_t decodeTime;
auto now = SC::now();
g_Manager.SetOutputData(reqId);
{
std::unique_lock lock(g_MetricsMutex);
// 生成token数
int64_t flag;
int64_t outputLen;
auto ret = ParseEosAttr(response, &flag, &outputLen);
if (!ret.IsOk()) {
std::cout << "ReqId:" << reqId << ", Error:" << ret.StatusMsg() << std::endl;
return;
}
g_Metrics[reqId].tokensOutput += outputLen;
if (g_Metrics[reqId].firstTokenCost == 0) {
// prefill 记录首token时间
decodeTime = GetDuration(now, g_Metrics[reqId].startingTime);
g_Metrics[reqId].firstTokenCost = decodeTime;
} else {
// decode 记录每次decode的时间
decodeTime = GetDuration(now, g_Metrics[reqId].lastTokenTime);
// 针对投机场景适配,decode返回小于等于gamma个token,四舍五入
auto avgDecodeTime = (decodeTime + outputLen / 2) / outputLen;
for (int i = 0; i < outputLen; ++i) {
g_Metrics[reqId].decodeTime.push_back(avgDecodeTime);
}
}
g_Metrics[reqId].lastTokenTime = now;
// 生成token id
if (g_RecordOutput) {
ret = ParseOutputId(response, g_Metrics[reqId].outputTokenIds);
if (!ret.IsOk()) {
std::cout << "ReqId:" << reqId << ", Error:" << ret.StatusMsg() << std::endl;
return;
}
}
if (response->IsEOS()) {
g_Metrics[reqId].endingTime = now;
// 最后一个Token耗时
g_Metrics[reqId].lastTokenCost = decodeTime;
}
}
if (response->IsEOS()) {
std::unique_lock lock(g_Mutex);
g_CompleteNum++;
std::cout << "ReqId:" << reqId << " Finished" << std::endl;
}
}
void SendRequest(InferenceEngine &engine, uint64_t maxBatchSize)
{
uint64_t processingNum = 0;
engine.GetProcessingRequest(&processingNum);
std::cout << "the processing request num is " << processingNum << " at first." << std::endl;
uint64_t slotNum = 0;
uint64_t remainBlocks = 0;
uint64_t remainPrefillSlots = 0;
uint64_t remainPrefillTokens = 0;
while (!g_Manager.Empty()) {
// 2. 获取可用的slot数目
engine.GetRequestBlockQuotas(&remainBlocks, &remainPrefillSlots, &remainPrefillTokens);
engine.GetProcessingRequest(&processingNum);
slotNum = maxBatchSize - processingNum;
if (remainBlocks > 0 && remainPrefillSlots > 0 && remainPrefillTokens > 0) {
// 3. Set input
std::vector<std::shared_ptr<Data>> data =
g_Manager.GetInputDataByQuotas(remainBlocks, remainPrefillSlots, remainPrefillTokens, slotNum);
if (!data.empty()) {
std::vector<std::shared_ptr<InferenceRequest>> requests = Data2Request(data);
g_Statistics.requestNumber += requests.size(); // total num
// 4. forward(异步)
for (size_t i = 0; i < requests.size(); ++i) {
auto reqId = requests[i]->GetRequestId().StringValue();
{
std::unique_lock lock(g_MetricsMutex);
g_Metrics[reqId].startingTime = SC::now();
g_Metrics[reqId].tokensInput = data[i]->size;
}
engine.Forward(requests[i]);
}
}
}
std::this_thread::sleep_for(std::chrono::milliseconds(20L));
}
engine.GetProcessingRequest(&processingNum);
std::cout << "the processing request num is " << processingNum << " when all requests dispatched." << std::endl;
}
void RunEngine(std::string dataset)
{
TtimeT start;
TtimeT end;
g_Manager.SetInputData(dataset);
// 初始化engine
InferenceEngine engine;
auto ret = engine.Init(ResponseCallback);
if (!ret.IsOk()) {
std::cout << "engine init failed: " << ret.StatusMsg() << std::endl;
return;
}
uint64_t maxBatchSize;
ret = engine.GetMaxBatchSize(&maxBatchSize);
if (!ret.IsOk()) {
std::cout << "GetMaxBatchSize failed: " << ret.StatusMsg() << std::endl;
return;
}
start = SC::now();
SendRequest(engine, maxBatchSize);
while (g_CompleteNum < g_Statistics.requestNumber) {
std::this_thread::sleep_for(std::chrono::milliseconds(10L));
}
end = SC::now();
// 5. 统计打点信息
g_Statistics.modelFullName = "";
g_Statistics.tp = 8;
g_Statistics.pp = 1;
g_Statistics.latencyForAll = GetDuration(end, start);
FormatMetrics(g_Metrics, g_Statistics);
PrintStatistics(g_Statistics);
if (g_RecordOutput) {
std::map<std::string, std::vector<int64_t>> outputTokensId;
for (auto &m : g_Metrics) {
outputTokensId[m.first] = m.second.outputTokenIds;
}
WriteOutputIds(outputTokensId, "./token_output.csv");
}
// 6. 释放资源
auto res = engine.Finalize();
std::cout << "inferenceEngine finalize message is : " << res.StatusMsg() << std::endl;
{
std::unique_lock<std::mutex> lock(g_ExitMtx);
g_ProcessExit = true;
}
}
}
int main(int argc, char *argv[])
{
// 数据集管理
std::string dataset = argc > 1 ? argv[1] : "token_input_gsm.csv";
g_RecordOutput = argc > 2 && std::stoi(argv[2]);
std::thread businessThread(RunEngine, dataset);
businessThread.detach();
int status;
while (true) {
pid_t childPid = wait(&status);
if (childPid == -1) {
sleep(10u);
} else {
std::cout << "Child Process:" << childPid << " Exited" << std::endl;
}
std::unique_lock<std::mutex> lock(g_ExitMtx);
if (g_ProcessExit) {
break;
}
}
return 0;
}