配置进程级别重调度
本章节将指导用户了解配置进程级别重调度的关键步骤。进程级别重调度的特性介绍、使用约束、支持的产品型号及原理请参见进程级别重调度。
构建镜像
使用Dockerfile构建容器镜像,新增启动命令。
# MindCluster无损失断点续训适配脚本,MINDX_ELASTIC_PKG为Elastic Agent whl安装包的路径,MINDIO_TTP_PKG为MindIO的whl安装包的路径,请根据实际情况填写 RUN pip3 install $MINDX_ELASTIC_PKG RUN pip3 install $MINDIO_TTP_PKG # 可选,使用优雅容错、Pod级别重调度或进程级别重调度时必须配置以下命令 RUN sed -i '/import logging/i import mindx_elastic.api' $(pip3 show torch | grep Location | awk -F ' ' '{print $2}')/torch/distributed/run.py # 可选,MindSpore框架下,使用进程级别重调度需配置以下命令 RUN pip install $TASKD_WHL
准备任务YAML
在任务YAML中,新增以下字段,开启进程级别重调度。其中process-recover-enable是训练进程恢复的统一开关,打开后训练进程恢复才生效。recover-strategy是训练进程恢复使用的策略,其中的recover代表开启进程级别恢复。
目前进程级别重调度支持以下2种方式,用户可根据实际使用场景,选择其中一种方式进行使用。
- 方式一:故障后迁移故障Pod到健康节点
... metadata: labels: ... process-recover-enable: "on" fault-scheduling: "force" ... ... annotations: ... recover-strategy: "recover" # 任务可用恢复策略(retry:进程级在线恢复;recover:进程级别重调度;recover-in-place: 进程级原地恢复;dump:保存临终遗言;exit:退出训练),5种策略可随意组合,策略之间由逗号分割 ... ... spec: replicaSpecs: Master: template: spec: containers: - name: ascend # do not modify env: - name: PROCESS_RECOVER # 注入该环境变量以启用进程级别重调度功能(具体策略由recover-strategy指定) value: "on" args: - | ... export ELASTIC_PROCESS_RECOVER_ENABLE=1; ... bash scripts/train_start.sh /job/code /job/output pretrain_gpt.py \ ... --enable-high-availability \ --enable-worker-reboot \ ... Worker: template: spec: containers: - name: ascend # do not modify env: - name: PROCESS_RECOVER # 注入该环境变量以启用进程级别重调度功能(具体策略由recover-strategy指定) value: "on" args: - | ... export ELASTIC_PROCESS_RECOVER_ENABLE=1; ... bash scripts/train_start.sh /job/code /job/output pretrain_gpt.py \ ... --enable-high-availability \ --enable-worker-reboot \ ... ...
- 方式二:故障后不迁移故障Pod,仅重启故障进程
... metadata: labels: ... process-recover-enable: "on" fault-scheduling: "force" ... ... annotations: ... recover-strategy: "recover-in-place" # 任务可用恢复策略(retry:进程级在线恢复;recover:进程级别重调度;recover-in-place: 进程级原地恢复;dump:保存临终遗言;exit:退出训练),5种策略可随意组合,策略之间由逗号分割 ... ... spec: replicaSpecs: Master: template: spec: containers: - name: ascend # do not modify env: - name: PROCESS_RECOVER # 注入该环境变量以启用进程级别重调度功能(具体策略由recover-strategy指定) value: "on" args: - | ... export ELASTIC_PROCESS_RECOVER_ENABLE=1; export ENABLE_RESTART_FAULT_PROCESS=on; ... bash scripts/train_start.sh /job/code /job/output pretrain_gpt.py \ ... --enable-high-availability \ --enable-worker-reboot \ ... Worker: template: spec: containers: - name: ascend # do not modify env: - name: PROCESS_RECOVER # 注入该环境变量以启用进程级别重调度功能(具体策略由recover-strategy指定) value: "on" args: - | ... export ELASTIC_PROCESS_RECOVER_ENABLE=1; export ENABLE_RESTART_FAULT_PROCESS=on; ... bash scripts/train_start.sh /job/code /job/output pretrain_gpt.py \ ... --enable-high-availability \ --enable-worker-reboot \ ... ...
适配训练脚本
(可选)用户可以在启动训练的shell脚本(例如train_start.sh)中,导入环境变量及新增max_restarts和monitor_interval参数,示例如下。
... export ELASTIC_PROCESS_RECOVER_ENABLE=1; # 配置进程级别重调度需导入本环境变量 export ENABLE_RESTART_FAULT_PROCESS=on; # 配置进程级原地恢复需导入本环境变量,若恢复策略为recover时无需导入 …… logger "server id is: ""${server_id}" if [ "${framework}" == "PyTorch" ]; then get_env_for_pytorch_multi_node_job DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT --monitor_interval 10" ...
父主题: 配置故障处理