Host侧代码与说明
考虑以下算子计算场景:A矩阵大小为32*32, B矩阵大小为32*32,数据类型为float。
整体流程如下:首先在Host侧给参数创建空间并赋初始值,其次在Device侧创建参数指针并分配空间,再将初始值拷贝到Device中就可以调用Device侧的核函数,Device侧代码与说明包含了函数的具体实现。
Device执行结束后可以将结果从Device侧拷贝到Host侧并与CPU执行结果相对比,最后释放空间与数据流即可。
// host侧文件:main.cce
// 直接通过<<<>>>异构调用语法调用device侧kernel
#include "acl/acl.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define M 32
#define K 32
#define N 32
// 矩阵初始化函数
void InitMatrix(float *matrix, uint32_t m, uint32_t n, float min_value, float max_value) {
float range = max_value - min_value;
for (uint32_t i = 0; i < m; i++) {
for (uint32_t j = 0; j < n; j++) {
float random_value = (float)rand() / (float)RAND_MAX;
matrix[i * n + j] = min_value + random_value * range;
}
}
}
// 矩阵相乘函数,用于在Host侧计算结果,后续和Device侧对比
void matrix_multiply(float a[M][K], float b[K][N], float result[M][N]) {
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
result[i][j] = 0;
for (int k = 0; k < K; k++) {
result[i][j] += a[i][k] * b[k][j];
}
}
}
}
// 判断两个矩阵是否相等函数,用于验证Device侧结果的正确性
bool are_matrices_equal(float mat1[M][N], float mat2[M][N]) {
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
if (fabs(mat1[i][j] - mat2[i][j]) > 1.0f) {
return false;
}
}
}
return true;
}
// 分形转换函数,用于将ND格式矩阵转为ZZ格式的矩阵
void ConvertRowMajorToZZ(float *input, float *output, int m, int n) {
const int BLOCK_HEIGHT = 16;
const int BLOCK_WIDTH = 8;
int block_rows = (m + BLOCK_HEIGHT - 1) / BLOCK_HEIGHT;
int block_cols = (n + BLOCK_WIDTH - 1) / BLOCK_WIDTH;
int out_idx = 0;
for (int block_i = 0; block_i < block_rows; block_i++) {
for (int block_j = 0; block_j < block_cols; block_j++) {
int start_row = block_i * BLOCK_HEIGHT;
int start_col = block_j * BLOCK_WIDTH;
for (int r = 0; r < BLOCK_HEIGHT; r++) {
int actual_row = start_row + r;
if (actual_row >= m) {
continue;
}
for (int c = 0; c < BLOCK_WIDTH; c++) {
int actual_col = start_col + c;
if (actual_col >= n) {
continue;
}
int in_idx = actual_row * n + actual_col;
output[out_idx++] = input[in_idx];
}
}
}
}
}
// 分形转换函数,用于将ND格式矩阵转为ZN格式的矩阵
void ConvertRowMajorToZN(float *input, float *output, int m, int n) {
const int BLOCK_HEIGHT = 8;
const int BLOCK_WIDTH = 16;
int block_rows = (m + BLOCK_HEIGHT - 1) / BLOCK_HEIGHT;
int block_cols = (n + BLOCK_WIDTH - 1) / BLOCK_WIDTH;
int out_idx = 0;
for (int block_i = 0; block_i < block_rows; block_i++) {
for (int block_j = 0; block_j < block_cols; block_j++) {
int start_row = block_i * BLOCK_HEIGHT;
int start_col = block_j * BLOCK_WIDTH;
for (int c = 0; c < BLOCK_WIDTH; c++) {
int actual_col = start_col + c;
if (actual_col >= n) break;
for (int r = 0; r < BLOCK_HEIGHT; r++) {
int actual_row = start_row + r;
if (actual_row >= m) break;
int in_idx = actual_row * n + actual_col;
output[out_idx++] = input[in_idx];
}
}
}
}
}
extern "C" __global__ [aicore] void mat_mul_kernel(__gm__ uint8_t * __restrict tensor_a, __gm__ uint8_t * __restrict tensor_b, __gm__ uint8_t * __restrict tensor_c, int m, int k, int n);
int main() {
aclrtSetDevice(0);
aclrtStream stream;
aclrtCreateStream(&stream);
// Host侧数据处理
float tensor_a[M][K] = {1.0};
float tensor_a_convert[M][K] = {1.0};
float tensor_b[K][N] = {1.0};
float tensor_b_convert[K][N] = {1.0};
float tensor_c[M][N] = {0.0};
InitMatrix((float *)tensor_a, M, K, -5, 5);
InitMatrix((float *)tensor_b, M, K, -5, 5);
InitMatrix((float *)tensor_c, M, N, -5, 5);
// 计算Host侧的golden输出
float golden[M][N] = {0.0};
matrix_multiply(tensor_a, tensor_b, golden);
// 分形转换,将ND数据分别转换为ZZ和ZN格式,以分别适配L0A和L0B的要求
ConvertRowMajorToZZ((float *)tensor_a, (float *)tensor_a_convert, M, K);
ConvertRowMajorToZN((float *)tensor_b, (float *)tensor_b_convert, K, N);
// 在Device上分配内存,aclrtMalloc分配的是原始字节内存,不包含任何类型信息,在Device侧核函数中需要以正确类型解释这些内存区域
__gm__ uint8_t *tensor_aGm = nullptr;
__gm__ uint8_t *tensor_bGm = nullptr;
__gm__ void *tensor_aGm_void;
aclrtMalloc(&tensor_aGm_void, sizeof(tensor_a), ACL_MEM_MALLOC_NORMAL_ONLY);
tensor_aGm = reinterpret_cast<__gm__ unsigned char *>(tensor_aGm_void);
__gm__ void *tensor_bGm_void;
aclrtMalloc(&tensor_bGm_void, sizeof(tensor_b), ACL_MEM_MALLOC_NORMAL_ONLY);
tensor_bGm = reinterpret_cast<__gm__ unsigned char *>(tensor_bGm_void);
__gm__ uint8_t *tensor_cGm = nullptr;
__gm__ void *tensor_cGm_void;
aclrtMalloc(&tensor_cGm_void, sizeof(tensor_c), ACL_MEM_MALLOC_NORMAL_ONLY);
tensor_cGm = reinterpret_cast<__gm__ unsigned char *>(tensor_cGm_void);
// 将Host侧数据拷贝到Device侧
aclrtMemcpyAsync((void *)tensor_aGm, sizeof(tensor_a_convert), (float *)tensor_a_convert, sizeof(tensor_a_convert), ACL_MEMCPY_HOST_TO_DEVICE, stream);
aclrtMemcpyAsync((void *)tensor_bGm, sizeof(tensor_b_convert), (float *)tensor_b_convert, sizeof(tensor_b_convert), ACL_MEMCPY_HOST_TO_DEVICE, stream);
aclrtMemcpyAsync((void *)tensor_cGm, sizeof(tensor_c), (void *)tensor_c, sizeof(tensor_c), ACL_MEMCPY_HOST_TO_DEVICE, stream);
// 启动Device侧核函数
mat_mul_kernel<<<1, nullptr, stream>>>(tensor_aGm, tensor_bGm, tensor_cGm, M, K, N);
// 获取Device执行结果,并拷贝到Host
aclrtMemcpyAsync((void *)tensor_c, sizeof(tensor_c), tensor_cGm,
sizeof(tensor_c), ACL_MEMCPY_DEVICE_TO_HOST, stream);
aclrtSynchronizeStream(stream);
// 打印Host侧计算的golden输出和Device侧计算的输出,将float转换为int类型便于观察
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
printf("%6d", (int)golden[i][j]);
if (j % N == N-1) {
printf("\n");
}
}
}
printf("\n");
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
printf("%6d", (int)tensor_c[i][j]);
if (j % N == N-1) {
printf("\n");
}
}
}
printf("\n");
// 判断Device侧的计算结果是否正确
bool equal1 = are_matrices_equal(golden, tensor_c);
printf("Matrix golden and Matrix tensor_c are %s\n", equal1 ? "equal" : "not equal");
// 释放数据空间以及数据流
aclrtFree(tensor_aGm);
aclrtFree(tensor_bGm);
aclrtFree(tensor_cGm);
aclrtDestroyStream(stream);
aclrtResetDevice(0);
}
父主题: 示例1