asdConvolve_complex64
安全声明:
该样例旨在提供快速上手、开发和调试算子的最小化实现,其核心目标是使用最精简的代码展示算子的核心功能,而非提供生产级的安全保障。
不推荐用户直接将样例作为业务代码,若用户将示例代码应用在自身的真实业务场景中且发生了安全问题,则需用户自行承担。
asdConvolve_complex64
asdConvolve_complex64算子的调用示例:
#include <iostream>
#include "asdsip.h"
#include "filter_api.h"
#include "acl/acl.h"
#include "acl/acl_base.h"
#include "acl_meta.h"
#include <complex>
#include <vector>
#include <time.h>
using namespace AsdSip;
#define ASD_STATUS_CHECK(err) \
do { \
AsdSip::AspbStatus err_ = (err); \
if (err_ != AsdSip::ErrorType::ACL_SUCCESS) { \
std::cout << "Execute failed." << std::endl; \
exit(-1); \
} \
} while (0)
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t> &shape)
{
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream *stream)
{
// 固定写法,acl初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
aclDataType dataType, aclTensor **tensor)
{
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据复制到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(),
shape.size(),
dataType,
strides.data(),
0,
aclFormat::ACL_FORMAT_ND,
shape.data(),
shape.size(),
*deviceAddr);
return 0;
}
template <typename T>
void printTensor(std::vector<T> tensorData, int64_t tensorSize)
{
for (int64_t i = 0; i < tensorSize; i++) {
std::cout << tensorData[i] << " ";
}
std::cout << std::endl;
}
int main(int argc, char **argv)
{
int deviceId = 0;
aclrtStream stream;
aclmdlRI modelRI;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
int64_t signalLen = 128;
int64_t kernelLen = 8;
int64_t batchCount = 2;
std::vector<std::complex<float>> tensorSignalData;
tensorSignalData.reserve(signalLen * batchCount);
std::vector<float> tensorKernelData;
tensorKernelData.reserve(kernelLen);
for (int64_t i = 0; i < signalLen * batchCount; i++) {
tensorSignalData[i] = {1.0, 1.0};
}
for (int64_t i = 0; i < kernelLen; i++) {
tensorKernelData[i] = 1.0 + i;
}
std::vector<std::complex<float>> tensorOutData;
tensorOutData.reserve(signalLen * batchCount);
for (int64_t i = 0; i < signalLen * batchCount; i++) {
tensorOutData[i] = {-1.0, -1.0} ;
}
std::vector<int64_t> signalShape = {batchCount, signalLen};
std::vector<int64_t> kernelShape = {kernelLen};
std::vector<int64_t> resultShape = {batchCount, signalLen};
aclTensor *signal = nullptr;
aclTensor *kernel = nullptr;
aclTensor *output = nullptr;
void *signalDeviceAddr = nullptr;
void *kernelDeviceAddr = nullptr;
void *outputDeviceAddr = nullptr;
ret = CreateAclTensor<std::complex<float>>(
tensorSignalData, signalShape, &signalDeviceAddr, aclDataType::ACL_COMPLEX64, &signal);
CHECK_RET(ret == ::ACL_SUCCESS, return ret);
ret = CreateAclTensor<float>(
tensorKernelData, kernelShape, &kernelDeviceAddr, aclDataType::ACL_FLOAT, &kernel);
CHECK_RET(ret == ::ACL_SUCCESS, return ret);
ret = CreateAclTensor<std::complex<float>>(
tensorOutData, resultShape, &outputDeviceAddr, aclDataType::ACL_COMPLEX64, &output);
CHECK_RET(ret == ::ACL_SUCCESS, return ret);
size_t lwork = 0;
AsdSip::asdConvolveGetWorkspaceSize(signalLen, kernelLen, lwork);
void *buffer = nullptr;
std::cout << "lwork = " << lwork << std::endl;
if (lwork > 0) {
ret = aclrtMalloc(&buffer, static_cast<int64_t>(lwork), ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
auto convolve_func = [signal, kernel, output, stream, buffer]() {
int IterNum = 1000;
for (int i = 0; i < IterNum; i++) {
ASD_STATUS_CHECK(AsdSip::asdConvolve(signal, kernel, output, asdConvolveMode_t::ASD_CONVOLVE_SAME, stream, buffer));
}
};
aclmdlRICaptureBegin(stream, ACL_MODEL_RI_CAPTURE_MODE_GLOBAL);
convolve_func();
aclmdlRICaptureEnd(stream, &modelRI);
struct timespec start, end;
clock_gettime(CLOCK_MONOTONIC, &start);
aclmdlRIExecuteAsync(modelRI, stream);
aclrtSynchronizeStream(stream);
clock_gettime(CLOCK_MONOTONIC, &end);
uint64_t elapsed_time = (end.tv_sec - start.tv_sec) * 1000000000 + (end.tv_nsec - start.tv_nsec);
printf("ACL graph Execution time: %llu ms\n", elapsed_time / 1000 / 1000);
clock_gettime(CLOCK_MONOTONIC, &start);
convolve_func();
aclrtSynchronizeStream(stream);
clock_gettime(CLOCK_MONOTONIC, &end);
elapsed_time = (end.tv_sec - start.tv_sec) * 1000000000 + (end.tv_nsec - start.tv_nsec);
printf("normal Execution time: %llu ms\n", elapsed_time / 1000 / 1000);
aclmdlRIDestroy(modelRI);
aclDestroyTensor(signal);
aclDestroyTensor(kernel);
aclDestroyTensor(output);
aclrtFree(signalDeviceAddr);
aclrtFree(kernelDeviceAddr);
aclrtFree(outputDeviceAddr);
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}
父主题: Filter