batch场景
Matmul单次计算的过程需要搬入和搬出数据,当进行多次Matmul计算且单次Matmul计算的输入shape较小时,搬运开销在整体耗时中占比较大。为了提升性能,该接口提供批量处理Matmul的功能,调用一次IterateBatch,可以计算出多个singleCoreM * singleCoreN大小的C矩阵,有效提升带宽利用率。
如下的示例中,包含4个矩阵乘操作a*a、b*b、c*c、d*d,需要单核上计算多个singleCoreM *singleCoreN,shape较小的情况可以使能BatchMatmul,批量处理。以BMK*BKN=BMN(相关格式参见IterateBatch)场景为例,如下图,一次IterateBatch可同时计算出A = a*a、B = b*b、C = c*c、D = d*d。
实例化Matmul时,需要通过MatmulType设置输入输出的Layout格式为NORMAL(BMNK的数据排布格式使用NORMAL表示)。Host侧Tiling时需使用SetBatchInfoForNormal设置A/B/C的M/N/K轴信息和A/B矩阵的BatchNum数。
如下示例完成aGM、bGM矩阵乘,结果保存到cGm上,其中aGM、bGM、cGM数据的Layout格式均为NORMAL,左矩阵每次计算batchA个MK数据,右矩阵每次计算batchB个KN数据。更多数据排布格式的详细示例请参考BatchMatmul样例。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
#include "kernel_operator.h"
#include "lib/matmul_intf.h"
extern "C" __global__ __aicore__ void kernel_matmul_rpc_batch(GM_ADDR aGM, GM_ADDR bGM, GM_ADDR cGM, GM_ADDR biasGM, GM_ADDR tilingGM, GM_ADDR workspaceGM, uint32_t isTransposeAIn, uint32_t isTransposeBIn, int32_t batchA, int32_t batchB)
{
// 定义matmul type
typedef AscendC::MatmulType <AscendC::TPosition::GM, CubeFormat::ND, half, false, LayoutMode::NORMAL> aType;
typedef AscendC::MatmulType <AscendC::TPosition::GM, CubeFormat::ND, half, true, LayoutMode::NORMAL> bType;
typedef AscendC::MatmulType <AscendC::TPosition::GM, CubeFormat::ND, float, false, LayoutMode::NORMAL> cType;
typedef AscendC::MatmulType <AscendC::TPosition::GM, CubeFormat::ND, float> biasType;
// 初始化tiling数据
TCubeTiling tiling;
auto tempTilingGM = (__gm__ uint32_t*)tilingGM;
auto tempTiling = (uint32_t*)&tiling;
for (int i = 0; i < sizeof(TCubeTiling) / sizeof(int32_t); ++i, ++tempTilingGM, ++tempTiling) {
*tempTiling = *tempTilingGM;
}
// 初始化gm数据
AscendC::GlobalTensor<half> aGlobal;
AscendC::GlobalTensor<half> bGlobal;
AscendC::GlobalTensor<float> cGlobal;
AscendC::GlobalTensor<float> biasGlobal;
int32_t sizeA = tiling.ALayoutInfoB * tiling.singleCoreM * tiling.singleCoreK * sizeof(A_T);
int32_t sizeB = tiling.BLayoutInfoB * tiling.singleCoreK * tiling.singleCoreN * sizeof(B_T);
int32_t sizeC = tiling.CLayoutInfoB * tiling.singleCoreM * tiling.singleCoreN * sizeof(C_T);
int32_t sizebias = tiling.CLayoutInfoB * tiling.singleCoreN * sizeof(C_T);
aGlobal.SetGlobalBuffer(reinterpret_cast<__gm__ half*>(aGM), sizeA);
bGlobal.SetGlobalBuffer(reinterpret_cast<__gm__ half*>(bGM), sizeB);
cGlobal.SetGlobalBuffer(reinterpret_cast<__gm__ float*>(cGM), sizeC);
biasGlobal.SetGlobalBuffer(reinterpret_cast<__gm__ float*>(biasGM), sizebias);
tiling.shareMode = 0;
tiling.shareL1Size = 512 * 1024;
tiling.shareL0CSize = 128 * 1024;
tiling.shareUbSize = 0;
int offset_a=0, offset_b=0, offset_c=0, offset_bias=0;
AscendC::GlobalTensor<A_T> gm_a;
gm_a.SetGlobalBuffer(const_cast<__gm__ A_T*>(aGlobal[offset_a].GetPhyAddr()), tiling.singleCoreM * tiling.singleCoreK);
AscendC::GlobalTensor<B_T> gm_b;
gm_b.SetGlobalBuffer(const_cast<__gm__ B_T*>(bGlobal[offset_b].GetPhyAddr()), tiling.singleCoreK * tiling.singleCoreN);
AscendC::GlobalTensor<C_T> gm_c;
gm_c.SetGlobalBuffer(const_cast<__gm__ C_T*>(cGlobal[offset_c].GetPhyAddr()), tiling.singleCoreM * tiling.singleCoreN) ;
AscendC::GlobalTensor<BiasT> gm_bias;
gm_bias.SetGlobalBuffer(const_cast<__gm__ BiasT*>(biasGlobal[offset_bias].GetPhyAddr()), tiling.singleCoreN);
// 创建Matmul实例
constexpr MatmulConfig MM_CFG = GetNormalConfig(false, false, false, BatchMode::BATCH_LESS_THAN_L1);
AscendC::Matmul<aType, bType, cType, biasType, MM_CFG> mm1;
AscendC::TPipe pipe;
g_cubeTPipePtr = &pipe;
SetSysWorkspace(workspaceGM);
REGIST_MATMUL_OBJ(&pipe, GetSysWorkSpacePtr(), mm1);
mm1.Init(&tiling);
mm1.SetTensorA(gm_a, isTransposeAIn);
mm1.SetTensorB(gm_b, isTransposeBIn);
if(tiling.isBias) {
mm1.SetBias(gm_bias);
}
// 多batch Matmul计算
mm1.IterateBatch(gm_c, batchA, batchB, false);
}
|
父主题: 矩阵编程(高阶API)