ArithProgression
功能说明
给定起始值,等差值和长度,返回一个等差数列。
实现原理
以float类型,ND格式,firstValue和diffValue输入Scalar为例,描述ArithProgression高阶API内部算法框图,如下图所示。
 
    计算过程分为如下几步,均在Vector上进行:
- 等差数列长度8以内步骤:按照firstValue和diffValue的值,使用SetValue实现等差数列扩充,扩充长度最大为8,如果等差数列长度小于8,算法结束;
- 等差数列长度8至64的步骤:对第一步中的等差数列结果使用Adds进行扩充,最大循环7次扩充至64,如果等差数列长度小于64,算法结束;
- 等差数列长度64以上的步骤:对第二步中的等差数列结果使用Adds进行扩充,不断循环直至达到等差数列长度为止。
函数原型
| 1 2 | template <typename T> __aicore__ inline void ArithProgression(const LocalTensor<T> &dstLocal, const T firstValue, const T diffValue, const int32_t count) | 
参数说明
| 接口 | 功能 | 
|---|---|
| T | 操作数的数据类型。 | 
| 参数名 | 输入/输出 | 描述 | 
|---|---|---|
| dstLocal | 输出 | 目的操作数。dstTensor的大小应大于等于count * sizeof(T)。 类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。 Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float/int16_t/int32_t Atlas推理系列产品AI Core,支持的数据类型为:half/float/int16_t/int32_t | 
| firstValue | 输入 | 等差数列的首个元素值。 Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float/int16_t/int32_t Atlas推理系列产品AI Core,支持的数据类型为:half/float/int16_t/int32_t | 
| diffValue | 输入 | 等差数列元素之间的差值,应大于等于0。 Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float/int16_t/int32_t Atlas推理系列产品AI Core,支持的数据类型为:half/float/int16_t/int32_t | 
| count | 输入 | 等差数列的长度。count>0。 | 
返回值
无
支持的型号
Atlas A2训练系列产品/Atlas 800I A2推理产品
Atlas推理系列产品AI Core
注意事项
当前仅支持ND格式的输入,不支持其他格式。
调用示例
#include "kernel_operator.h"
template <typename T>
class KernelArithProgression {
public:
    __aicore__ inline KernelArithProgression()
    {}
    __aicore__ inline void Init(GM_ADDR dstGm, int64_t firstValue, int64_t diffValue, uint32_t count)
    {
        firstValue_ = firstValue;
        diffValue_ = diffValue;
        count_ = count;
        dst_global.SetGlobalBuffer(reinterpret_cast<__gm__ T *>(dstGm), count_);
        pipe.InitBuffer(outDst, 1, (sizeof(T) * count_ + 32 - 1) / 32 * 32);
    }
    __aicore__ inline void Process()
    {
        CopyIn();
        Compute();
        CopyOut();
    }
private:
    __aicore__ inline void CopyIn()
    {
        ;
    }
    __aicore__ inline void Compute()
    {
        AscendC::LocalTensor<T> dstLocal = outDst.AllocTensor<T>();
        AscendC::ArithProgression<T>(dstLocal, static_cast<T>(firstValue_), static_cast<T>(diffValue_), count_);
        outDst.EnQue<T>(dstLocal);
    }
    __aicore__ inline void CopyOut()
    {
        AscendC::LocalTensor<T> dstLocal = outDst.DeQue<T>();
        const int32_t BLOCK_NUM = 32 / sizeof(T);
        AscendC::DataCopy(dst_global, dstLocal, (count_ + BLOCK_NUM - 1) / BLOCK_NUM * BLOCK_NUM);
        outDst.FreeTensor(dstLocal);
    }
private:
    AscendC::TPipe pipe;
    AscendC::TQue<AscendC::QuePosition::VECOUT, 1> outDst;
    AscendC::GlobalTensor<T> dst_global;
    int64_t firstValue_;
    int64_t diffValue_;
    uint32_t count_;
};
extern "C" __global__ __aicore__ void kernel_arith_progression_operator(GM_ADDR dstLocal)
{
    KernelArithProgression<half> op;
    op.Init(dstLocal, 1, 2, 15);
    op.Process();
}