昇腾社区首页
中文
注册

aclnnAddLayerNorm

支持的产品型号

  • Atlas 推理系列产品
  • Atlas A2训练系列产品/Atlas 800I A2推理产品

接口原型

每个算子分为两段式接口,必须先调用aclnnAddLayerNormGetWorkspaceSize接口获取入参并根据计算流程所需workspace大小,再调用aclnnAddLayerNorm接口执行计算。

  • aclnnStatus aclnnAddLayerNormGetWorkspaceSize(const aclTensor *x1, const aclTensor *x2, const aclTensor *gamma, const aclTensor *beta, const aclTensor *bias, double epsilon, bool additionalOut, const aclTensor *yOut, const aclTensor *meanOut, const aclTensor *rstdOut, const aclTensor *xOut, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnAddLayerNorm(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

  • 算子功能:实现AddLayerNorm功能。
  • 计算公式
x=x1+x2+biasx = x1 + x2 + bias y=xxˉVar(x)+eγ+βy = {{x-\bar{x}}\over\sqrt {Var(x)+e}} * \gamma + \beta

aclnnAddLayerNormGetWorkspaceSize

  • 参数说明:

    • x1(aclTensor *,计算输入):表示AddLayerNorm中加法计算的输入,将会在算子内做 x1 + x2 + bias 的计算并对计算结果做层归一化;是Device 侧的aclTensor,数据类型支持FLOAT、FLOAT16、BFLOAT16(Atlas 推理系列产品不支持),shape支持2-8维度,数据格式支持ND。
    • x2(aclTensor *,计算输入):表示AddLayerNorm中加法计算的输入,将会在算子内做 x1 + x2 + bias 的计算并对计算结果做层归一化;是Device 侧的aclTensor,数据类型支持FLOAT、FLOAT16、BFLOAT16(Atlas 推理系列产品不支持),shape支持2-8维度,数据格式支持ND。
    • beta(aclTensor *,计算输入):对应LayerNorm计算公式中的 beta ,表示层归一化中的 beta 参数;是Device 侧的aclTensor,数据类型支持FLOAT、FLOAT16、BFLOAT16(Atlas 推理系列产品不支持),shape支持2-8维度,数据格式支持ND,数据维度和x1/x2的尾轴相同。
    • gamma(aclTensor *,计算输入):对应LayerNorm计算公式中的 gamma,表示层归一化中的 gamma 参数;是Device 侧的aclTensor,数据类型支持FLOAT、FLOAT16、BFLOAT16(Atlas 推理系列产品不支持),shape支持2-8维度,数据格式支持ND,数据维度和x1/x2的尾轴相同。
    • bias(aclTensor *,计算输入):可选输入参数,表示AddLayerNorm中加法计算的输入,将会在算子内做 x1 + x2 + bias 的计算并对计算结果做层归一化;shape可以和gamma/beta或是和x1/x2一致,是Device 侧的aclTensor,数据类型支持FLOAT、FLOAT16、BFLOAT16(Atlas 推理系列产品不支持),shape支持2-8维度,数据格式支持ND。
    • epsilon(double *,计算输入):表对应LayerNorm中的epsilon,添加到分母中的值,以确保数值稳定;host侧的aclScalar,数据类型为double,默认值为1e-5。
    • additionalOut(bool *,计算输入):表示是否开启x=x1+x2的输出,host侧的aclScalar,数据类型为bool。
    • meanOut(aclTensor *,计算输出):输出 LayerNorm 计算过程中 (x1 + x2) 的结果的均值,Device 侧的aclTensor,数据类型为FLOAT,shape需要与输入x1/x2一致,最后一轴的size为1,数据格式支持ND,该输出在Atlas 推理系列产品上无效。计算逻辑:mean=np.mean(x1+x2)mean = np.mean(x1 + x2)
    • rstdOut(aclTensor *,计算输出):输出 LayerNorm 计算过程中 rstd 的结果,Device 侧的aclTensor,数据类型为FLOAT,shape需要与输入x1/x2一致,最后一轴的size为1,数据格式支持ND,该输出在Atlas 推理系列产品上无效。计算逻辑:rstd=np.power((np.var(x1+x2)+epsilon),(0.5))rstd = np.power((np.var(x1 + x2) + epsilon), (-0.5))
    • yOut(aclTensor *,计算输出):表示LayerNorm的结果输出y,Device 侧的aclTensor,数据类型支持FLOAT、FLOAT16、BFLOAT16(Atlas 推理系列产品不支持),需要与输入x1/x2一致,shape需要与输入x1/x2一致,数据格式支持ND。
    • xOut(aclTensor *,计算输出):表示LayerNorm的结果输出x,Device 侧的aclTensor,数据类型支持FLOAT、FLOAT16、BFLOAT16(Atlas 推理系列产品不支持),需要与输入x1/x2一致,shape需要与输入x1/x2一致,数据格式支持ND。
    • workspaceSize(uint64_t *,出参):返回用户需要在Device 侧申请的workspace大小。
    • executor(aclOpExecutor **,出参):返回op执行器,包含了算子计算流程。
  • 返回值:

    aclnnStatus:返回状态码。(参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    161001 (ACLNN_ERR_PARAM_NULLPTR):如果传入参数是必选输入,输出或者必选属性,且是空指针,则返回161001。

aclnnAddLayerNorm

  • 参数说明:

    • workspace(void *,入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnAddLayerNormGetWorkspaceSize获取。
    • executor(aclOpExecutor *,入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
  • 返回值:

    aclnnStatus:返回状态码。(具体参见aclnn返回码

约束与限制

  • 功能维度
    • 数据类型支持
      • x1、x2、beta、gamma、bias支持:FLOAT32、FLOAT16、BFLOAT16(Atlas 推理系列产品不支持)。
      • rstd、mean支持:FLOAT32。
    • 数据格式支持:ND。
  • 未支持类型说明
    • DOUBLE:指令不支持DOUBLE。
    • 是否支持空tensor:不支持空进空出。
    • 是否非连续tensor:不支持输入非连续,不支持数据非连续。
  • 边界值场景说明
    • 当输入是inf时,输出为inf。
    • 当输入是nan时,输出为nan。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_add_layer_norm.h"

#define CHECK_RET(cond, return_expr)\
do {                                \
  if (!(cond)) {                    \
    return_expr;                    \
  }                                 \
} while (0)

#define LOG_PRINT(message, ...)   \
    do {                          \
  printf(message, ##__VA_ARGS__); \
} while (0)

int64_t GetShapeSize(const std::vector<int64_t> &shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtStream *stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
                    aclDataType dataType, aclTensor **tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  // check根据自己的需要处理
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造,本示例中将各调用一次不带bias可选输入的和带bias输入的用例
  float eps = 1e-6;
  bool additionalOut = true;

  std::vector<int64_t> x1Shape = {1, 2, 8};
  std::vector<int64_t> x2Shape = {1, 2, 8};
  std::vector<int64_t> gammaShape = {8};
  std::vector<int64_t> betaShape = {8};
  std::vector<int64_t> biasShape = {8};

  std::vector<int64_t> outputYShape = {1, 2, 8};
  std::vector<int64_t> outputMeanShape = {1, 2, 1};
  std::vector<int64_t> outputRstdShape = {1, 2, 1};
  std::vector<int64_t> outputXShape = {1, 2, 8};

  void *x1DeviceAddr = nullptr;
  void *x2DeviceAddr = nullptr;
  void *betaDeviceAddr = nullptr;
  void *gammaDeviceAddr = nullptr;
  void *biasDeviceAddr = nullptr;

  // 用于不带bias的输出 Device 地址
  void *outputYDeviceAddr = nullptr;
  void *outputMeanDeviceAddr = nullptr;
  void *outputRstdDeviceAddr = nullptr;
  void *outputXDeviceAddr = nullptr;

  // 用于带bias的输出 Device 地址
  void *outputYDeviceAddrBias = nullptr;
  void *outputMeanDeviceAddrBias = nullptr;
  void *outputRstdDeviceAddrBias = nullptr;
  void *outputXDeviceAddrBias = nullptr;

  aclTensor *x1 = nullptr;
  aclTensor *x2 = nullptr;
  aclTensor *beta = nullptr;
  aclTensor *gamma = nullptr;
  aclTensor *bias = nullptr;

  // 用于不带bias的aclTensor
  aclTensor *outputY = nullptr;
  aclTensor *outputMean = nullptr;
  aclTensor *outputRstd = nullptr;
  aclTensor *outputX = nullptr;

  // 用于带bias的aclTensor
  aclTensor *outputYBias = nullptr;
  aclTensor *outputMeanBias = nullptr;
  aclTensor *outputRstdBias = nullptr;
  aclTensor *outputXBias = nullptr;

  std::vector<float> x1HostData = {1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2};
  std::vector<float> x2HostData = {4, 4, 4, 4, 4, 4, 4, 4, -3, -3, -3, -3, -3, -3, -3, -3};
  std::vector<float> gammaHostData = {2, 2, 2, 2, 2, 2, 2, 2};
  std::vector<float> betaHostData = {0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1};
  std::vector<float> biasHostData = {0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5};

  // 用于不带bias的HostData
  std::vector<float> outputYHostData(1 * 2 * 8);
  std::vector<float> outputMeanHostData(2);
  std::vector<float> outputRstdHostData(2);
  std::vector<float> outputXHostData(1 * 2 * 8);

  // 用于带bias的HostData
  std::vector<float> outputYHostDataBias(1 * 2 * 8);
  std::vector<float> outputMeanHostDataBias(2);
  std::vector<float> outputRstdHostDataBias(2);
  std::vector<float> outputXHostDataBias(1 * 2 * 8);

  // 创建self aclTensor
  ret = CreateAclTensor(x1HostData, x1Shape, &x1DeviceAddr, aclDataType::ACL_FLOAT, &x1);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(x2HostData, x2Shape, &x2DeviceAddr, aclDataType::ACL_FLOAT, &x2);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(betaHostData,  betaShape, & betaDeviceAddr, aclDataType::ACL_FLOAT, &beta);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(gammaHostData, gammaShape, &gammaDeviceAddr, aclDataType::ACL_FLOAT, &gamma);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(biasHostData, biasShape, &biasDeviceAddr, aclDataType::ACL_FLOAT, &bias);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 创建不带 bias 的 aclTensor
  ret = CreateAclTensor(outputYHostData, outputYShape, &outputYDeviceAddr, aclDataType::ACL_FLOAT, &outputY);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(outputMeanHostData, outputMeanShape, &outputMeanDeviceAddr, aclDataType::ACL_FLOAT, &outputMean);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(outputRstdHostData, outputRstdShape, &outputRstdDeviceAddr, aclDataType::ACL_FLOAT, &outputRstd);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(outputXHostData, outputXShape, &outputXDeviceAddr, aclDataType::ACL_FLOAT, &outputX);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 创建带 bias 的 aclTensor
  ret = CreateAclTensor(outputYHostDataBias, outputYShape, &outputYDeviceAddrBias, aclDataType::ACL_FLOAT, &outputYBias);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(outputMeanHostDataBias, outputMeanShape, &outputMeanDeviceAddrBias, aclDataType::ACL_FLOAT, &outputMeanBias);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(outputRstdHostDataBias, outputRstdShape, &outputRstdDeviceAddrBias, aclDataType::ACL_FLOAT, &outputRstdBias);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(outputXHostDataBias, outputXShape, &outputXDeviceAddrBias, aclDataType::ACL_FLOAT, &outputXBias);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // aclnnAddLayerNorm接口调用示例,包含带bias和不带bias的各一次
  // 3. 调用CANN算子库API,需要修改为具体的Api名称

  // 3.1 不带bias可选输入的示例
  // 调用aclnnAddLayerNorm第一段接口
  uint64_t workspaceSize = 0;
  aclOpExecutor *executor;
  LOG_PRINT("\nUse aclnnAddLayerNorm Non-Bias Port.");
  // bias参数直接传入nullptr即可
  ret = aclnnAddLayerNormGetWorkspaceSize(x1, x2, gamma, beta, nullptr, eps, additionalOut,
                                      outputY, outputMean, outputRstd, outputX,
                                      &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAddLayerNormGetWorkspaceSize failed. ERROR: %d\n", ret);
            return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void *workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
  }
  // 调用aclnnAddLayerNorm第二段接口
  ret = aclnnAddLayerNorm(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAddLayerNorm failed. ERROR: %d\n", ret); return ret);

  // 3.2 带bias可选输入的示例
  // 调用aclnnAddLayerNorm第一段接口
  uint64_t workspaceSizeBias = 0;
  aclOpExecutor *executorBias;
  LOG_PRINT("\nUse aclnnAddLayerNorm Bias Port.");
  // 正常传入bias即可
  ret = aclnnAddLayerNormGetWorkspaceSize(x1, x2, gamma, beta, bias, eps, additionalOut,
                                      outputYBias, outputMeanBias, outputRstdBias, outputXBias,
                                      &workspaceSizeBias, &executorBias);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAddLayerNormGetWorkspaceSize failed. ERROR: %d\n", ret);
            return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void *workspaceAddrBias = nullptr;
  if (workspaceSizeBias > 0) {
    ret = aclrtMalloc(&workspaceAddrBias, workspaceSizeBias, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
  }
  // 调用aclnnAddLayerNorm第二段接口
  ret = aclnnAddLayerNorm(workspaceAddrBias, workspaceSizeBias, executorBias, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAddLayerNorm failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改

  // 5.1 考出不带bias的输出
  auto outputYSize = GetShapeSize(outputYShape);
  std::vector<float> resultDataY(outputYSize, 0);
  ret = aclrtMemcpy(resultDataY.data(), resultDataY.size() * sizeof(resultDataY[0]), outputYDeviceAddr,
                    outputYSize * sizeof(resultDataY[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  LOG_PRINT("==== AddLayerNorm non-bias: y output");
  for (int64_t i = 0; i < outputYSize; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultDataY[i]);
  }

  auto outputMeanSize = GetShapeSize(outputMeanShape);
  std::vector<float> resultDataMean(outputMeanSize, 0);
  ret = aclrtMemcpy(resultDataMean.data(), resultDataMean.size() * sizeof(resultDataMean[0]), outputMeanDeviceAddr,
                    outputMeanSize * sizeof(resultDataMean[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  LOG_PRINT("==== AddLayerNorm non-bias: mean output");
  for (int64_t i = 0; i < outputMeanSize; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultDataMean[i]);
  }

  auto outputRstdSize = GetShapeSize(outputRstdShape);
  std::vector<float> resultDataRstd(outputRstdSize, 0);
  ret = aclrtMemcpy(resultDataRstd.data(), resultDataRstd.size() * sizeof(resultDataRstd[0]), outputRstdDeviceAddr,
                    outputRstdSize * sizeof(resultDataRstd[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  LOG_PRINT("==== AddLayerNorm non-bias: rstd output");
  for (int64_t i = 0; i < outputRstdSize; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultDataRstd[i]);
  }

  auto outputXSize = GetShapeSize(outputXShape);
  std::vector<float> resultDataX(outputXSize, 0);
  ret = aclrtMemcpy(resultDataX.data(), resultDataX.size() * sizeof(resultDataX[0]), outputXDeviceAddr,
                    outputXSize * sizeof(resultDataX[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  LOG_PRINT("==== AddLayerNorm non-bias: x output");
  for (int64_t i = 0; i < outputXSize; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultDataX[i]);
  }

  // 5.2 考出带bias的输出
  auto outputYSizeBias = GetShapeSize(outputYShape);
  std::vector<float> resultDataYBias(outputYSizeBias, 0);
  ret = aclrtMemcpy(resultDataYBias.data(), resultDataYBias.size() * sizeof(resultDataYBias[0]), outputYDeviceAddrBias,
                    outputYSizeBias * sizeof(resultDataYBias[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  LOG_PRINT("==== AddLayerNorm bias: y output");
  for (int64_t i = 0; i < outputYSizeBias; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultDataYBias[i]);
  }

  auto outputMeanSizeBias = GetShapeSize(outputMeanShape);
  std::vector<float> resultDataMeanBias(outputMeanSizeBias, 0);
  ret = aclrtMemcpy(resultDataMeanBias.data(), resultDataMeanBias.size() * sizeof(resultDataMeanBias[0]), outputMeanDeviceAddrBias,
                    outputMeanSizeBias * sizeof(resultDataMeanBias[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  LOG_PRINT("==== AddLayerNorm bias: mean output");
  for (int64_t i = 0; i < outputMeanSizeBias; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultDataMeanBias[i]);
  }

  auto outputRstdSizeBias = GetShapeSize(outputRstdShape);
  std::vector<float> resultDataRstdBias(outputRstdSizeBias, 0);
  ret = aclrtMemcpy(resultDataRstdBias.data(), resultDataRstdBias.size() * sizeof(resultDataRstdBias[0]), outputRstdDeviceAddrBias,
                    outputRstdSizeBias * sizeof(resultDataRstdBias[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  LOG_PRINT("==== AddLayerNorm bias: rstd output");
  for (int64_t i = 0; i < outputRstdSizeBias; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultDataRstdBias[i]);
  }

  auto outputXSizeBias = GetShapeSize(outputXShape);
  std::vector<float> resultDataXBias(outputXSizeBias, 0);
  ret = aclrtMemcpy(resultDataXBias.data(), resultDataXBias.size() * sizeof(resultDataXBias[0]), outputXDeviceAddrBias,
                    outputXSizeBias * sizeof(resultDataXBias[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  LOG_PRINT("==== AddLayerNorm bias: x output");
  for (int64_t i = 0; i < outputXSizeBias; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultDataXBias[i]);
  }


  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(x1);
  aclDestroyTensor(x2);
  aclDestroyTensor(beta);
  aclDestroyTensor(gamma);
  aclDestroyTensor(bias);

  aclDestroyTensor(outputY);
  aclDestroyTensor(outputMean);
  aclDestroyTensor(outputRstd);
  aclDestroyTensor(outputX);

  aclDestroyTensor(outputYBias);
  aclDestroyTensor(outputMeanBias);
  aclDestroyTensor(outputRstdBias);
  aclDestroyTensor(outputXBias);

  // 7. 释放device资源,需要根据具体API的接口定义修改
  aclrtFree(x1DeviceAddr);
  aclrtFree(x2DeviceAddr);
  aclrtFree(gammaDeviceAddr);
  aclrtFree(betaDeviceAddr);
  aclrtFree(biasDeviceAddr);

  aclrtFree(outputYDeviceAddr);
  aclrtFree(outputMeanDeviceAddr);
  aclrtFree(outputRstdDeviceAddr);
  aclrtFree(outputXDeviceAddr);

  aclrtFree(outputYDeviceAddrBias);
  aclrtFree(outputMeanDeviceAddrBias);
  aclrtFree(outputRstdDeviceAddrBias);
  aclrtFree(outputXDeviceAddrBias);

  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }

  if (workspaceSizeBias > 0) {
    aclrtFree(workspaceAddrBias);
  }

  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}