Horovod脚本迁移示例
Horovod是基于TensorFlow、Keras、PyTorch以及MXNet的分布式训练框架,目的是提升分布式训练的性能。不同于传统的TensorFlow分布式训练采用PS worker架构,Horovod使用Allreduce作为来聚合梯度,能够更好地利用带宽,解决PS worker的瓶颈问题。本节介绍如何迁移基于Horovod开发的分布式训练脚本,用于在昇腾AI处理器进行分布式训练。
Horovod原始代码:
import tensorflow as tf
import horovod.tensorflow as hvd
# Initialize Horovod
hvd.init()
# Pin GPU to be used to process local rank (one GPU per process)
config = tf.ConfigProto()
config.gpu_options.visible_device_list = str(hvd.local_rank())
# Build model...
loss = ...
opt = tf.train.AdagradOptimizer(0.01 * hvd.size())
# Add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)
# Add hook to broadcast variables from rank 0 to all other processes during
# initialization.
hooks = [hvd.BroadcastGlobalVariablesHook(0)]
# Make training operation
train_op = opt.minimize(loss)
# Save checkpoints only on worker 0 to prevent other workers from corrupting them.
checkpoint_dir = '/tmp/train_logs' if hvd.rank() == 0 else None
# The MonitoredTrainingSession takes care of session initialization,
# restoring from a checkpoint, saving to a checkpoint, and closing when done
# or an error occurs.
with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,
config=config,
hooks=hooks) as mon_sess:
while not mon_sess.should_stop():
# Perform synchronous training.
mon_sess.run(train_op)
迁移后的代码:
# 导入NPU库 import tensorflow as tf from npu_bridge.npu_init import * # 本示例调用了HCCL的group管理接口,因此需要另起session进行HCCL初始化,更多介绍请参考集合通信初始化 npu_int = npu_ops.initialize_system() npu_shutdown = npu_ops.shutdown_system() config = tf.ConfigProto() custom_op = config.graph_options.rewrite_options.custom_optimizers.add() custom_op.name = "NpuOptimizer" config.graph_options.rewrite_options.remapping = RewriterConfig.OFF config.graph_options.rewrite_options.memory_optimization = RewriterConfig.OFF init_sess = tf.Session(config=config) init_sess.run(npu_int) # Pin GPU to be used to process local rank (one GPU per process) config.gpu_options.visible_device_list = str(get_local_rank_id()) # "hvd.local_rank"修改为"get_local_rank_id" # Build model... loss = ... opt = tf.train.AdagradOptimizer(0.01 * get_rank_size()) # "hvd.size"修改为"get_rank_size" # NPU allreduce opt = npu_distributed_optimizer_wrapper(opt) # "hvd.DistributedOptimizer"修改为"npu_distributed_optimizer_wrapper" # Add hook to broadcast variables from rank 0 to all other processes during # initialization. hooks = [] # "BroadcastGlobalVariablesHook"删除 # 在session run模式下调用集合通信接口broadcast进行变量广播: input = tf.trainable_variables() bcast_global_variables_op = hccl_ops.broadcast(input, 0) # Make training operation train_op = opt.minimize(loss) # Save checkpoints only on worker 0 to prevent other workers from corrupting them. checkpoint_dir = '/tmp/train_logs' if get_rank_id() == 0 else None # "hvd.rank"修改为"get_rank_id" # The MonitoredTrainingSession takes care of session initialization, # restoring from a checkpoint, saving to a checkpoint, and closing when done # or an error occurs. with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir, config=config, hooks=hooks) as mon_sess: # 变量广播 mon_sess.run(bcast_global_variables_op) while not mon_sess.should_stop(): # Perform synchronous training. mon_sess.run(train_op) # 训练结束后执行shutdown_system,同时关闭session init_sess.run(npu_shutdown) init_sess.close()
NPUDistributedOptimizer分布式优化器在当前版本依然兼容。
父主题: 分布式并行训练