asdInterpWithCoeff
安全声明:
该样例旨在提供快速上手、开发和调试算子的最小化实现,其核心目标是使用最精简的代码展示算子的核心功能,而非提供生产级的安全保障。
不推荐用户直接将样例作为业务代码,若用户将示例代码应用在自身的真实业务场景中且发生了安全问题,则需用户自行承担。
asdInterpWithCoeff
asdInterpWithCoeff算子的调用示例:
#include <iostream>
#include <complex>
#include <vector>
#include "interp_api.h"
#include "acl/acl.h"
#include "acl_meta.h"
using namespace AsdSip;
int64_t GetShapeSize(const std::vector<int64_t> &shape)
{
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream *stream)
{
// 固定写法,acl初始化
aclInit(nullptr);
aclrtSetDevice(deviceId);
aclrtCreateStream(stream);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
aclDataType dataType, aclTensor **tensor)
{
auto size = GetShapeSize(shape) * sizeof(T) * 2; // 2 : complex
// 调用aclrtMalloc申请device侧内存
aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
// 调用aclrtMemcpy将host侧数据复制到device侧内存上
aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(),
shape.size(),
dataType,
strides.data(),
0,
aclFormat::ACL_FORMAT_ND,
shape.data(),
shape.size(),
*deviceAddr);
return 0;
}
int main(int argc, char **argv)
{
// 设置算子使用的device id
int deviceId = 0;
//(固定写法)创造执行流
aclrtStream stream;
Init(deviceId, &stream);
// 创造tensor的Host侧数据
int64_t batch = 1;
int64_t nRs = 2;
int64_t totalSubcarrier = 32;
int64_t nSingal = 14;
int64_t xSize = batch * nRs * totalSubcarrier * 2;
std::vector<float> tensorInXData;
tensorInXData.reserve(xSize);
for (int64_t i = 0; i < xSize; i++) {
tensorInXData[i] = 1.0 + i;
}
int64_t coeffSize = batch * (nSingal - nRs) * nRs * 2;
std::vector<float> coeffData;
coeffData.reserve(xSize);
for (int64_t i = 0; i < coeffSize; i++) {
coeffData[i] = 1;
}
int64_t resultSize = batch * (nSingal - nRs) * totalSubcarrier * 2;
std::vector<float> resultData;
resultData.reserve(resultSize);
for (int64_t i = 0; i < resultSize; i++) {
resultData[i] = 2;
}
// int64_t xSize = batch * nRs * totalSubcarrier;
// std::vector<std::complex<float>> tensorInXData(xSize, std::complex<float>(0, 0));
// for (int i = 0; i < xSize; i++) {
// tensorInXData[i] = std::complex<float>(i * 2, i * 2 + 1);
// }
// int64_t coeffSize = batch * (nSingal - nRs) * nRs;
// std::vector<std::complex<float>> coeffData(xSize, std::complex<float>(0, 0));
// for (int i = 0; i < coeffSize; i++) {
// coeffData[i] = std::complex<float>(1, 1);
// }
// int64_t resultSize = batch * (nSingal - nRs) * totalSubcarrier;
// std::vector<std::complex<float>> resultData(xSize, std::complex<float>(0, 0));
// for (int i = 0; i < resultSize; i++) {
// resultData[i] = std::complex<float>(2, 2);
// }
std::cout << "------- input x -------" << std::endl;
for (int64_t i = 0; i < xSize; i++) {
std::cout << tensorInXData[i] << " ";
}
std::cout << std::endl;
std::cout << "------- input coeff -------" << std::endl;
for (int64_t i = 0; i < coeffSize; i++) {
std::cout << coeffData[i] << " ";
}
std::cout << std::endl;
// 创造输入/输出tensor
aclTensor *inputX = nullptr;
aclTensor *inputCoeff = nullptr;
aclTensor *result = nullptr;
void *inputXDeviceAddr = nullptr;
void *inputYDeviceAddr = nullptr;
void *resultDeviceAddr = nullptr;
CreateAclTensor(tensorInXData, {batch, nRs, totalSubcarrier}, &inputXDeviceAddr, aclDataType::ACL_COMPLEX64, &inputX);
CreateAclTensor(coeffData, {batch, nSingal-nRs, nRs}, &inputYDeviceAddr, aclDataType::ACL_COMPLEX64, &inputCoeff);
CreateAclTensor(resultData, {batch, nSingal-nRs, totalSubcarrier}, &resultDeviceAddr, aclDataType::ACL_COMPLEX64, &result);
size_t lwork = 0;
void *buffer = nullptr;
AsdSip::asdInterpWithCoeffGetWorkspaceSize(lwork);
if (lwork > 0) {
aclrtMalloc(&buffer, static_cast<int64_t>(lwork), ACL_MEM_MALLOC_HUGE_FIRST);
}
asdInterpWithCoeff(inputX, inputCoeff, result, stream, buffer);
aclrtSynchronizeStream(stream);
// 将输出tensor的Device侧数据复制到Host侧内存上
aclrtMemcpy(resultData.data(),
resultSize * sizeof(float),
resultDeviceAddr,
resultSize * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
std::cout << "------- result -------" << std::endl;
for (int64_t i = 0; i < nSingal - nRs; i++) {
for (int64_t j = 0; j < totalSubcarrier * 2; j++) {
std::cout << resultData[i * totalSubcarrier * 2 + j] << " ";
}
std::cout << std::endl;
}
// 资源释放
aclDestroyTensor(inputX);
aclDestroyTensor(inputCoeff);
aclDestroyTensor(result);
aclrtFree(inputXDeviceAddr);
aclrtFree(inputYDeviceAddr);
aclrtFree(resultDeviceAddr);
if (lwork > 0) {
aclrtFree(buffer);
}
// 调度算子后重置算子使用的deviceId
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}
父主题: Intepolation