昇腾社区首页
中文
注册
开发者
下载

Istft

  • 安全声明:

    该样例旨在提供快速上手、开发和调试算子的最小化实现,其核心目标是使用最精简的代码展示算子的核心功能,而非提供生产级的安全保障。

    不推荐用户直接将样例作为业务代码,若用户将示例代码应用在自身的真实业务场景中且发生了安全问题,则需用户自行承担。

  • Istft算子的调用示例:
    #include <iostream>
    #include <vector>
    #include "asdsip.h"
    #include "acl/acl.h"
    #include "aclnn/acl_meta.h"
    using namespace AsdSip;
    
    #define CHECK_RET(cond, return_expr) \
        do {                             \
            if (!(cond)) {               \
                return_expr;             \
            }                            \
        } while (0)
    
    #define LOG_PRINT(message, ...)         \
        do {                                \
            printf(message, ##__VA_ARGS__); \
        } while (0)
    
    #define ASD_STATUS_CHECK(err)                                                \
        do {                                                                     \
            AsdSip::AspbStatus err_ = (err);                                     \
            if (err_ != AsdSip::ErrorType::ACL_SUCCESS) {                                      \
                std::cout << "Execute failed." << std::endl; \
                exit(-1);                                                        \
            }                                                                    \
        } while (0)
    
    int64_t GetShapeSize(const std::vector<int64_t> &shape)
    {
        int64_t shapeSize = 1;
        for (auto i : shape) {
            shapeSize *= i;
        }
        return shapeSize;
    }
    
    int Init(int32_t deviceId, aclrtStream *stream)
    {
        // 固定写法,AscendCL初始化
        auto ret = aclInit(nullptr);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
        ret = aclrtSetDevice(deviceId);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
        ret = aclrtCreateStream(stream);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
        return 0;
    }
    
    template <typename T>
    int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
        aclDataType dataType, aclTensor **tensor)
    {
        auto size = GetShapeSize(shape) * sizeof(T);
        // 调用aclrtMalloc申请device侧内存
        auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
        // 调用aclrtMemcpy将host侧数据复制到device侧内存上
        ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
    
        // 计算连续tensor的strides
        std::vector<int64_t> strides(shape.size(), 1);
        for (int64_t i = shape.size() - 2; i >= 0; i--) {
            strides[i] = shape[i + 1] * strides[i + 1];
        }
    
        // 调用aclCreateTensor接口创建aclTensor
        *tensor = aclCreateTensor(shape.data(),
            shape.size(),
            dataType,
            strides.data(),
            0,
            aclFormat::ACL_FORMAT_ND,
            shape.data(),
            shape.size(),
            *deviceAddr);
        return 0;
    }
    
    int main()
    {
        int32_t deviceId = 0;
        aclrtStream stream;
        auto ret = Init(deviceId, &stream);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
    
        // 创造tensor的Host侧数据
        int64_t channel = 10, nFrames = 20, nFft = 16, hopLen = 4, winLen = 16;
        int64_t outLen = nFft + hopLen * (nFrames - 1) - nFft / 2 - nFft / 2;
        bool returnComplex = true;
        bool center = true, normalized = false, onesidedOpt = false;
        const int64_t tensorInSize = channel * nFrames * nFft;
        const int64_t tensorWinSize = winLen;
        const int64_t tensorOutSize = channel * outLen;
        std::vector<int64_t> selfShape = {channel, nFft, nFrames};
        std::vector<int64_t> winShape = {winLen};
        std::vector<int64_t> outShape = {channel, outLen};
    
        std::vector<std::complex<float>> inputHostData(tensorInSize, std::complex<float>(0, 0));
        for (int i = 0; i < tensorInSize; i++) {
            inputHostData[i] = std::complex<float>(i *  200.0f / tensorInSize - 100, i *  100.0f / tensorInSize - 50);
        }
        std::vector<float> winHostData(tensorWinSize, 0.0f);
        for (int i = 0; i < tensorWinSize; i++) {
            winHostData[i] = 1.0f / winLen * i ;
        }
        std::vector<std::complex<float>> outHostData(tensorOutSize, std::complex<float>(0, 0));
    
        void *inputDeviceAddr = nullptr;
        void *winDeviceAddr = nullptr;
        void *outDeviceAddr = nullptr;
        aclTensor *input = nullptr;
        aclTensor *win = nullptr;
        aclTensor *out = nullptr;
        ret = CreateAclTensor(inputHostData, selfShape, &inputDeviceAddr, aclDataType::ACL_COMPLEX64, &input);
        CHECK_RET(ret == ::ACL_SUCCESS, return ret);
        ret = CreateAclTensor(winHostData, winShape, &winDeviceAddr, aclDataType::ACL_FLOAT, &win);
        CHECK_RET(ret == ::ACL_SUCCESS, return ret);
        ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_COMPLEX64, &out);
        CHECK_RET(ret == ::ACL_SUCCESS, return ret);
    
        asdFftHandle handle;
        asdFftCreate(handle);
        asdFftIstftMakePlan(handle, input, nFft, hopLen, winLen, center, normalized, onesidedOpt, 0, returnComplex);
    
        size_t work_size;
        asdFftGetWorkspaceSize(handle, work_size);
        void *workspaceAddr = nullptr;
        if (work_size > 0) {
            ret = aclrtMalloc(&workspaceAddr, static_cast<int64_t>(work_size), ACL_MEM_MALLOC_HUGE_FIRST);
            CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
        }
        asdFftSetWorkspace(handle, (uint8_t *)workspaceAddr);
    
        asdFftSetStream(handle, stream);
        ASD_STATUS_CHECK(asdFftExecIstft(handle, input, win, out));
    
        ret = aclrtSynchronizeStream(stream);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
    
        asdFftDestroy(handle);
    
        auto size = GetShapeSize(outShape);
        std::vector<std::complex<float>> outData(size, 0);
        ret = aclrtMemcpy(outData.data(),
            outData.size() * sizeof(outData[0]),
            outDeviceAddr,
            size * sizeof(outData[0]),
            ACL_MEMCPY_DEVICE_TO_HOST);
    
        // 打印输出tensor值中前16个
        for (int64_t i = 0; i < 16; i++) {
            std::cout << static_cast<std::complex<float>>(outData[i]) << "\t";
        }
        std::cout << "\nend result" << std::endl;
        std::cout << "Execute successfully." << std::endl;
    
        aclDestroyTensor(input);
        aclDestroyTensor(win);
        aclDestroyTensor(out);
        aclrtFree(inputDeviceAddr);
        aclrtFree(winDeviceAddr);
        aclrtFree(outDeviceAddr);
        if (work_size > 0) {
            aclrtFree(workspaceAddr);
        }
        aclrtDestroyStream(stream);
        aclrtResetDevice(deviceId);
        aclFinalize();
        return 0;
    }