昇腾社区首页
中文
注册
开发者
下载

HcgemmBatched

  • 安全声明:

    该样例旨在提供快速上手、开发和调试算子的最小化实现,其核心目标是使用最精简的代码展示算子的核心功能,而非提供生产级的安全保障。

    不推荐用户直接将样例作为业务代码,若用户将示例代码应用在自身的真实业务场景中且发生了安全问题,则需用户自行承担。

  • HcgemmBatched算子调用示例:
    #include <iostream>
    #include <vector>
    #include "asdsip.h"
    #include "acl/acl.h"
    #include "acl_meta.h"
    
    
    using namespace AsdSip;
    
    #define ASD_STATUS_CHECK(err)                                                \
        do {                                                                     \
            AsdSip::AspbStatus err_ = (err);                                     \
            if (err_ != AsdSip::ErrorType::ACL_SUCCESS) {                        \
                std::cout << "Execute failed." << std::endl;                     \
                exit(-1);                                                        \
            } else {                                                             \
                std::cout << "Execute successfully." << std::endl;               \
            }                                                                    \
        } while (0)
    
    #define CHECK_RET(cond, return_expr) \
        do {                             \
            if (!(cond)) {               \
                return_expr;             \
            }                            \
        } while (0)
    
    #define LOG_PRINT(message, ...)         \
        do {                                \
            printf(message, ##__VA_ARGS__); \
        } while (0)
    
    int64_t GetShapeSize(const std::vector<int64_t> &shape)
    {
        int64_t shapeSize = 1;
        for (auto i : shape) {
            shapeSize *= i;
        }
        return shapeSize;
    }
    
    int Init(int32_t deviceId, aclrtStream *stream)
    {
        // 固定写法,acl初始化
        auto ret = aclInit(nullptr);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
        ret = aclrtSetDevice(deviceId);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
        ret = aclrtCreateStream(stream);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
        return 0;
    }
    
    template <typename T>
    int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
        aclDataType dataType, aclTensor **tensor)
    {
        auto size = GetShapeSize(shape) * sizeof(T);
        // 调用aclrtMalloc申请device侧内存
        auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
        // 调用aclrtMemcpy将host侧数据复制到device侧内存上
        ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
    
        // 计算连续tensor的strides
        std::vector<int64_t> strides(shape.size(), 1);
        for (int64_t i = shape.size() - 2; i >= 0; i--) {
            strides[i] = shape[i + 1] * strides[i + 1];
        }
    
        // 调用aclCreateTensor接口创建aclTensor
        *tensor = aclCreateTensor(shape.data(),
            shape.size(),
            dataType,
            strides.data(),
            0,
            aclFormat::ACL_FORMAT_ND,
            shape.data(),
            shape.size(),
            *deviceAddr);
        return 0;
    }
    
    void printTensor(std::vector<std::complex<op::fp16_t>> tensorData, int64_t batch, int64_t rows, int64_t cols)
    {
        for (int64_t b = 0; b < batch; b++) {
            for (int64_t i = 0; i < rows; i++) {
                for (int64_t j = 0; j < cols; j++) {
                    auto data = tensorData[b * rows * cols + i * cols + j];
                    std::cout << "(" << (float)data.real() << "," << (float)data.imag() << ")" << " ";
                }
                std::cout << std::endl;
            }
            std::cout << std::endl;
        }
    }
    
    int main(int argc, char **argv)
    {
        int deviceId = 0;
    
        aclrtStream stream;
        auto ret = Init(deviceId, &stream);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
    
        int batch = 2;
        int m = 3;
        int k = 3;
        int n = 3;
        asdBlasOperation_t transA = asdBlasOperation_t::ASDBLAS_OP_N;
        asdBlasOperation_t transB = asdBlasOperation_t::ASDBLAS_OP_N;
        std::complex<op::fp16_t> alpha = std::complex<op::fp16_t>(1.0f, 0.0f);
        std::complex<op::fp16_t> beta = std::complex<op::fp16_t>(0.0f, 0.0f);
    
        int64_t lda = k;
        int64_t ldb = n;
        int64_t ldc = n;
    
        const int64_t tensorASize = batch * m * k;
        const int64_t tensorBSize = batch * k * n;
        const int64_t tensorCSize = batch * m * n;
    
        std::vector<std::complex<op::fp16_t>> tensorInAData;
        tensorInAData.reserve(tensorASize);
        for (int i = 0; i < tensorASize; i++) {
            tensorInAData.push_back(std::complex<op::fp16_t>(1.0f, i + 0.0f));
        }
    
        std::vector<std::complex<op::fp16_t>> tensorInBData;
        tensorInBData.reserve(tensorBSize);
        for (int i = 0; i < tensorBSize; i++) {
            tensorInBData.push_back(std::complex<op::fp16_t>(1.0f, i + 0.0f));
        }
    
        std::vector<std::complex<op::fp16_t>> tensorInCData;
        tensorInCData.reserve(tensorCSize);
        for (int i = 0; i < tensorCSize; i++) {
            tensorInCData.push_back(std::complex<op::fp16_t>(1.0f, i + 0.0f));
        }
    
        std::vector<int64_t> matAShape = {batch, m, k};
        std::vector<int64_t> matBShape = {batch, k, n};
        std::vector<int64_t> matCShape = {batch, m, n};
    
        aclTensor *matA = nullptr;
        aclTensor *matB = nullptr;
        aclTensor *matC = nullptr;
        void *matADeviceAddr = nullptr;
        void *matBDeviceAddr = nullptr;
        void *matCDeviceAddr = nullptr;
    
        ret = CreateAclTensor<std::complex<op::fp16_t>>(
            tensorInAData, matAShape, &matADeviceAddr, aclDataType::ACL_COMPLEX32, &matA);
        CHECK_RET(ret == ::ACL_SUCCESS, return ret);
    
        ret = CreateAclTensor<std::complex<op::fp16_t>>(
            tensorInBData, matBShape, &matBDeviceAddr, aclDataType::ACL_COMPLEX32, &matB);
        CHECK_RET(ret == ::ACL_SUCCESS, return ret);
    
        ret = CreateAclTensor<std::complex<op::fp16_t>>(
            tensorInCData, matCShape, &matCDeviceAddr, aclDataType::ACL_COMPLEX32, &matC);
        CHECK_RET(ret == ::ACL_SUCCESS, return ret);
        std::cout << "alpha = " << "(" << (float) alpha.real() << "," << (float) alpha.imag() << ")" << std::endl;
        std::cout << "beta = " << "(" << (float) beta.real() << "," << (float) beta.imag() << ")" << std::endl;
        std::cout << "------- input TensorInA -------" << std::endl;
        printTensor(tensorInAData, batch, m, k);
        std::cout << "------- input TensorInB -------" << std::endl;
        printTensor(tensorInBData, batch, k, n);
    
        asdBlasHandle handle;
        asdBlasCreate(handle);
    
        size_t lwork = 0;
        void *buffer = nullptr;
        asdBlasMakeHCgemmBatchedPlan(handle);
        asdBlasGetWorkspaceSize(handle, lwork);
        std::cout << "lwork = " << lwork << std::endl;
        if (lwork > 0) {
            ret = aclrtMalloc(&buffer, static_cast<int64_t>(lwork), ACL_MEM_MALLOC_HUGE_FIRST);
            CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
        }
        asdBlasSetWorkspace(handle, buffer);
        asdBlasSetStream(handle, stream);
    
        ASD_STATUS_CHECK(asdBlasHCgemmBatched(handle, transA, transB, m, n, k, alpha, matA, lda, matB, ldb, beta, matC, ldc, batch));
    
        asdBlasSynchronize(handle);
        asdBlasDestroy(handle);
    
        ret = aclrtMemcpy(tensorInCData.data(),
            tensorCSize * sizeof(std::complex<op::fp16_t>),
            matCDeviceAddr,
            tensorCSize * sizeof(std::complex<op::fp16_t>),
            ACL_MEMCPY_DEVICE_TO_HOST);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
    
        std::cout << "------- output TensorInC -------" << std::endl;
        printTensor(tensorInCData, batch, m, n);
    
        aclDestroyTensor(matA);
        aclDestroyTensor(matB);
        aclDestroyTensor(matC);
        aclrtFree(matADeviceAddr);
        aclrtFree(matBDeviceAddr);
        aclrtFree(matCDeviceAddr);
    
        aclrtDestroyStream(stream);
        aclrtResetDevice(deviceId);
        aclFinalize();
        return 0;
    }