昇腾社区首页
中文
注册
开发者
下载

Ssyr2

  • 安全声明:

    该样例旨在提供快速上手、开发和调试算子的最小化实现,其核心目标是使用最精简的代码展示算子的核心功能,而非提供生产级的安全保障。

    不推荐用户直接将样例作为业务代码,若用户将示例代码应用在自身的真实业务场景中且发生了安全问题,则需用户自行承担。

  • asdBlasSsyr2算子调用示例:
    #include <iostream>
    #include <vector>
    #include "asdsip.h"
    #include "acl/acl.h"
    #include "acl_meta.h"
    
    using namespace AsdSip;
    
    #define ASD_STATUS_CHECK(err)                                                \
        do {                                                                     \
            AsdSip::AspbStatus err_ = (err);                                     \
            if (err_ != AsdSip::ErrorType::ACL_SUCCESS) {                                      \
                std::cout << "Execute failed." << std::endl; \
                exit(-1);                                                        \
            }                                                                    \
        } while (0)
    
    #define CHECK_RET(cond, return_expr) \
        do {                             \
            if (!(cond)) {               \
                return_expr;             \
            }                            \
        } while (0)
    
    #define LOG_PRINT(message, ...)         \
        do {                                \
            printf(message, ##__VA_ARGS__); \
        } while (0)
    
    int64_t GetShapeSize(const std::vector<int64_t> &shape)
    {
        int64_t shapeSize = 1;
        for (auto i : shape) {
            shapeSize *= i;
        }
        return shapeSize;
    }
    
    int Init(int32_t deviceId, aclrtStream *stream)
    {
        // 固定写法,acl初始化
        auto ret = aclInit(nullptr);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
        ret = aclrtSetDevice(deviceId);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
        ret = aclrtCreateStream(stream);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
        return 0;
    }
    
    template <typename T>
    int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
        aclDataType dataType, aclTensor **tensor)
    {
        auto size = GetShapeSize(shape) * sizeof(T);
        // 调用aclrtMalloc申请device侧内存
        auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
        // 调用aclrtMemcpy将host侧数据复制到device侧内存上
        ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
    
        // 计算连续tensor的strides
        std::vector<int64_t> strides(shape.size(), 1);
        for (int64_t i = shape.size() - 2; i >= 0; i--) {
            strides[i] = shape[i + 1] * strides[i + 1];
        }
    
        // 调用aclCreateTensor接口创建aclTensor
        *tensor = aclCreateTensor(shape.data(),
            shape.size(),
            dataType,
            strides.data(),
            0,
            aclFormat::ACL_FORMAT_ND,
            shape.data(),
            shape.size(),
            *deviceAddr);
        return 0;
    }
    
    int main(int argc, char **argv)
    {
        int deviceId = 0;
    
        aclrtStream stream;
        auto ret = Init(deviceId, &stream);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
    
        int64_t n = 5;
        asdBlasFillMode_t uplo = asdBlasFillMode_t::ASDBLAS_FILL_MODE_LOWER;
        float alpha = 2.0f;
        int64_t incx = 1;
        int64_t incy = 1;
        int64_t lda = 5;
    
        const int64_t tensorXSize = n;
    
        std::vector<float> tensorInXData;
        tensorInXData.reserve(tensorXSize);
        for (int i = 0; i < tensorXSize; i++) {
            tensorInXData.push_back(1.0 + i);
        }
    
        const int64_t tensorYSize = n;
    
        std::vector<float> tensorInYData;
        tensorInYData.reserve(tensorYSize);
        for (int i = 0; i < tensorYSize; i++) {
            tensorInYData.push_back(2.0f + i);
        }
    
        const int64_t tensorASize = n * n;
    
        std::vector<float> tensorInAData;
        tensorInAData.reserve(tensorYSize);
        for (int i = 0; i < tensorASize; i++) {
            tensorInAData.push_back(1.0f);
        }
    
        std::cout << "alpha = " << static_cast<int32_t>(alpha) << std::endl;
        std::cout << "uplo = " << static_cast<int32_t>(uplo) << std::endl;
        std::cout << "------- input X -------" << std::endl;
        for (int64_t i = 0; i < tensorXSize; i++) {
            std::cout << tensorInXData[i] << " ";
        }
        std::cout << std::endl;
        std::cout << "------- input Y -------" << std::endl;
        for (int64_t i = 0; i < tensorYSize; i++) {
            std::cout << tensorInYData[i] << " ";
        }
        std::cout << std::endl;
        std::cout << "------- input A -------" << std::endl;
        for (int64_t i = 0; i < n; i++) {
            for (int64_t j = 0; j < n; j++)
                std::cout << tensorInAData[i * n + j] << " ";
            std::cout << std::endl;
        }
    
        std::vector<int64_t> xShape = {n};
        std::vector<int64_t> yShape = {n};
        std::vector<int64_t> matAShape = {n, n};
    
        aclTensor *inputX = nullptr;
        aclTensor *inputY = nullptr;
        aclTensor *inputA = nullptr;
        void *inputXDeviceAddr = nullptr;
        void *inputYDeviceAddr = nullptr;
        void *inputADeviceAddr = nullptr;
    
        ret = CreateAclTensor<float>(tensorInXData, xShape, &inputXDeviceAddr, aclDataType::ACL_FLOAT, &inputX);
        CHECK_RET(ret == ::ACL_SUCCESS, return ret);
    
        ret = CreateAclTensor<float>(tensorInYData, yShape, &inputYDeviceAddr, aclDataType::ACL_FLOAT, &inputY);
        CHECK_RET(ret == ::ACL_SUCCESS, return ret);
    
        ret = CreateAclTensor<float>(tensorInAData, matAShape, &inputADeviceAddr, aclDataType::ACL_FLOAT, &inputA);
        CHECK_RET(ret == ::ACL_SUCCESS, return ret);
    
        asdBlasHandle handle;
        asdBlasCreate(handle);
    
        size_t lwork = 0;
        void *buffer = nullptr;
        asdBlasMakeSsyr2Plan(handle);
        asdBlasGetWorkspaceSize(handle, lwork);
        std::cout << "lwork = " << lwork << std::endl;
        if (lwork > 0) {
            ret = aclrtMalloc(&buffer, static_cast<int64_t>(lwork), ACL_MEM_MALLOC_HUGE_FIRST);
            CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
        }
        asdBlasSetWorkspace(handle, buffer);
        asdBlasSetStream(handle, stream);
    
        ASD_STATUS_CHECK(asdBlasSsyr2(handle, uplo, n, alpha, inputX, incx, inputY, incy, inputA, lda));
    
        asdBlasSynchronize(handle);
        asdBlasDestroy(handle);
    
        ret = aclrtMemcpy(tensorInAData.data(),
            n * n * sizeof(float),
            inputADeviceAddr,
            n * n * sizeof(float),
            ACL_MEMCPY_DEVICE_TO_HOST);
        CHECK_RET(ret == ::ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
    
        std::cout << "------- output A -------" << std::endl;
        for (int64_t i = 0; i < n; i++) {
            for (int64_t j = 0; j < n; j++) {
                std::cout << tensorInAData[i * n + j] << " ";
            }
            std::cout << std::endl;
        }
        std::cout << "Execute successfully." << std::endl;
    
        aclDestroyTensor(inputX);
        aclDestroyTensor(inputY);
        aclDestroyTensor(inputA);
        aclrtFree(inputXDeviceAddr);
        aclrtFree(inputYDeviceAddr);
        aclrtFree(inputADeviceAddr);
    
        aclrtDestroyStream(stream);
        aclrtResetDevice(deviceId);
        aclFinalize();
        return 0;
    }