通过API构图并执行
图1 通过FlowNode构图并执行

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import dataflow as df import numpy as np # 系统初始化 options = { "ge.exec.deviceId":"0", "ge.experiment.data_flow_deploy_info_path":"./data_flow_deploy_info.json", "ge.socVersion": "AscendXXX" # 根据环境修改version } df.init(options) # 定义FlowData data0 = df.FlowData() data1 = df.FlowData() # 定义FuncProcessPoint实现Add功能并添加到FlowNode中 pp0 = df.FuncProcessPoint(compile_config_path='config/add_func.json') add_node = df.FlowNode(input_num=2, output_num=1) add_node.add_process_point(pp0) # 构建FlowData和FlowNode的连边关系 add_out = add_node(data0, data1) # 通过FlowOut构建FlowGraph dag = df.FlowGraph([add_out]) # 调用FlowGraph.feed_data填充输入 flow_info = df.FlowInfo() dag.feed_data({data0:np.array([[1, 2]], dtype=np.int32), data1:np.array([[2, 3]], dtype=np.int32)}, flow_info) # 调用FlowGraph.fetch_data获取输出 print("dataflow fetch result:", dag.fetch_data()) # 释放系统资源 df.finalize() |
父主题: DataFlow运行