昇腾社区首页
中文
注册

PyTorch训练场景

PyTorch GPU环境训练脚本样例

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import argparse
import os
import random
import shutil
import time
import warnings
from enum import Enum

import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.transforms as transforms
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import Subset

model_names = sorted(name for name in models.__dict__
    if name.islower() and not name.startswith("__")
    and callable(models.__dict__[name]))

parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR', nargs='?', default='imagenet',
                    help='path to dataset (default: imagenet)')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
                    choices=model_names,
                    help='model architecture: ' +
                        ' | '.join(model_names) +
                        ' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
                    help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                    help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
                    metavar='N',
                    help='mini-batch size (default: 256), this is the total '
                         'batch size of all GPUs on the current node when '
                         'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
                    metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                    help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
                    metavar='W', help='weight decay (default: 1e-4)',
                    dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
                    metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
                    help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
                    help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
                    help='use pre-trained model')
parser.add_argument('--world-size', default=-1, type=int,
                    help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
                    help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
                    help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
                    help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
                    help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
                    help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
                    help='Use multi-processing distributed training to launch '
                         'N processes per node, which has N GPUs. This is the '
                         'fastest way to use PyTorch for either single node or '
                         'multi node data parallel training')
parser.add_argument('--dummy', action='store_true', help="use fake data to benchmark")

best_acc1 = 0


def main():
    args = parser.parse_args()

    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        cudnn.benchmark = False
        warnings.warn('You have chosen to seed training. '
                      'This will turn on the CUDNN deterministic setting, '
                      'which can slow down your training considerably! '
                      'You may see unexpected behavior when restarting '
                      'from checkpoints.')

    if args.gpu is not None:
        warnings.warn('You have chosen a specific GPU. This will completely '
                      'disable data parallelism.')

    if args.dist_url == "env://" and args.world_size == -1:
        args.world_size = int(os.environ["WORLD_SIZE"])

    args.distributed = args.world_size > 1 or args.multiprocessing_distributed

    if torch.cuda.is_available():
        ngpus_per_node = torch.cuda.device_count()
        if ngpus_per_node == 1 and args.dist_backend == "nccl":
            warnings.warn("nccl backend >=2.5 requires GPU count>1, see https://github.com/NVIDIA/nccl/issues/103 perhaps use 'gloo'")
    else:
        ngpus_per_node = 1

    if args.multiprocessing_distributed:
        # Since we have ngpus_per_node processes per node, the total world_size
        # needs to be adjusted accordingly
        args.world_size = ngpus_per_node * args.world_size
        # Use torch.multiprocessing.spawn to launch distributed processes: the
        # main_worker process function
        mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
    else:
        # Simply call main_worker function
        main_worker(args.gpu, ngpus_per_node, args)


def main_worker(gpu, ngpus_per_node, args):
    global best_acc1
    args.gpu = gpu

    if args.gpu is not None:
        print("Use GPU: {} for training".format(args.gpu))

    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if args.multiprocessing_distributed:
            # For multiprocessing distributed training, rank needs to be the
            # global rank among all the processes
            args.rank = args.rank * ngpus_per_node + gpu
        dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                world_size=args.world_size, rank=args.rank)
    # create model
    if args.pretrained:
        print("=> using pre-trained model '{}'".format(args.arch))
        model = models.__dict__[args.arch](pretrained=True)
    else:
        print("=> creating model '{}'".format(args.arch))
        model = models.__dict__[args.arch]()
    if not torch.cuda.is_available() and not torch.backends.mps.is_available():
        print('using CPU, this will be slow')
    elif args.distributed:
        # For multiprocessing distributed, DistributedDataParallel constructor
        # should always set the single device scope, otherwise,
        # DistributedDataParallel will use all available devices.
        if torch.cuda.is_available():
            if args.gpu is not None:
                torch.cuda.set_device(args.gpu)
                model.cuda(args.gpu)
                # When using a single GPU per process and per
                # DistributedDataParallel, we need to divide the batch size
                # ourselves based on the total number of GPUs of the current node.
                args.batch_size = int(args.batch_size / ngpus_per_node)
                args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
                model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
            else:
                model.cuda()
                # DistributedDataParallel will divide and allocate batch_size to all
                # available GPUs if device_ids are not set
                model = torch.nn.parallel.DistributedDataParallel(model)
    elif args.gpu is not None and torch.cuda.is_available():
        torch.cuda.set_device(args.gpu)
        model = model.cuda(args.gpu)
    elif torch.backends.mps.is_available():
        device = torch.device("mps")
        model = model.to(device)
    else:
        # DataParallel will divide and allocate batch_size to all available GPUs
        if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
            model.features = torch.nn.DataParallel(model.features)
            model.cuda()
        else:
            model = torch.nn.DataParallel(model).cuda()

    if torch.cuda.is_available():
        if args.gpu:
            device = torch.device('cuda:{}'.format(args.gpu))
        else:
            device = torch.device("cuda")
    elif torch.backends.mps.is_available():
        device = torch.device("mps")
    else:
        device = torch.device("cpu")
    # define loss function (criterion), optimizer, and learning rate scheduler
    criterion = nn.CrossEntropyLoss().to(device)

    optimizer = torch.optim.SGD(model.parameters(), args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
    scheduler = StepLR(optimizer, step_size=30, gamma=0.1)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            if args.gpu is None:
                checkpoint = torch.load(args.resume)
            elif torch.cuda.is_available():
                # Map model to be loaded to specified single gpu.
                loc = 'cuda:{}'.format(args.gpu)
                checkpoint = torch.load(args.resume, map_location=loc)
            args.start_epoch = checkpoint['epoch']
            best_acc1 = checkpoint['best_acc1']
            if args.gpu is not None:
                # best_acc1 may be from a checkpoint from a different GPU
                best_acc1 = best_acc1.to(args.gpu)
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            scheduler.load_state_dict(checkpoint['scheduler'])
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))


    # Data loading code
    if args.dummy:
        print("=> Dummy data is used!")
        train_dataset = datasets.FakeData(1281167, (3, 224, 224), 1000, transforms.ToTensor())
        val_dataset = datasets.FakeData(50000, (3, 224, 224), 1000, transforms.ToTensor())
    else:
        traindir = os.path.join(args.data, 'train')
        valdir = os.path.join(args.data, 'val')
        normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

        train_dataset = datasets.ImageFolder(
            traindir,
            transforms.Compose([
                transforms.RandomResizedCrop(224),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalize,
            ]))

        val_dataset = datasets.ImageFolder(
            valdir,
            transforms.Compose([
                transforms.Resize(256),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalize,
            ]))

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
        val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False, drop_last=True)
    else:
        train_sampler = None
        val_sampler = None

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
        num_workers=args.workers, pin_memory=True, sampler=train_sampler)

    val_loader = torch.utils.data.DataLoader(
        val_dataset, batch_size=args.batch_size, shuffle=False,
        num_workers=args.workers, pin_memory=True, sampler=val_sampler)

    if args.evaluate:
        validate(val_loader, model, criterion, args)
        return

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch, device, args)

        # evaluate on validation set
        acc1 = validate(val_loader, model, criterion, args)

        scheduler.step()

        # remember best acc@1 and save checkpoint
        is_best = acc1 > best_acc1
        best_acc1 = max(acc1, best_acc1)

        if not args.multiprocessing_distributed or (args.multiprocessing_distributed
                and args.rank % ngpus_per_node == 0):
            save_checkpoint({
                'epoch': epoch + 1,
                'arch': args.arch,
                'state_dict': model.state_dict(),
                'best_acc1': best_acc1,
                'optimizer' : optimizer.state_dict(),
                'scheduler' : scheduler.state_dict()
            }, is_best)


def train(train_loader, model, criterion, optimizer, epoch, device, args):
    batch_time = AverageMeter('Time', ':6.3f')
    data_time = AverageMeter('Data', ':6.3f')
    losses = AverageMeter('Loss', ':.4e')
    top1 = AverageMeter('Acc@1', ':6.2f')
    top5 = AverageMeter('Acc@5', ':6.2f')
    progress = ProgressMeter(
        len(train_loader),
        [batch_time, data_time, losses, top1, top5],
        prefix="Epoch: [{}]".format(epoch))

    # switch to train mode
    model.train()

    end = time.time()
    for i, (images, target) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        # move data to the same device as model
        images = images.to(device, non_blocking=True)
        target = target.to(device, non_blocking=True)

        # compute output
        output = model(images)
        loss = criterion(output, target)

        # measure accuracy and record loss
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        losses.update(loss.item(), images.size(0))
        top1.update(acc1[0], images.size(0))
        top5.update(acc5[0], images.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.print_freq == 0:
            progress.display(i + 1)


def validate(val_loader, model, criterion, args):

    def run_validate(loader, base_progress=0):
        with torch.no_grad():
            end = time.time()
            for i, (images, target) in enumerate(loader):
                i = base_progress + i
                if args.gpu is not None and torch.cuda.is_available():
                    images = images.cuda(args.gpu, non_blocking=True)
                if torch.backends.mps.is_available():
                    images = images.to('mps')
                    target = target.to('mps')
                if torch.cuda.is_available():
                    target = target.cuda(args.gpu, non_blocking=True)

                # compute output
                output = model(images)
                loss = criterion(output, target)

                # measure accuracy and record loss
                acc1, acc5 = accuracy(output, target, topk=(1, 5))
                losses.update(loss.item(), images.size(0))
                top1.update(acc1[0], images.size(0))
                top5.update(acc5[0], images.size(0))

                # measure elapsed time
                batch_time.update(time.time() - end)
                end = time.time()

                if i % args.print_freq == 0:
                    progress.display(i + 1)

    batch_time = AverageMeter('Time', ':6.3f', Summary.NONE)
    losses = AverageMeter('Loss', ':.4e', Summary.NONE)
    top1 = AverageMeter('Acc@1', ':6.2f', Summary.AVERAGE)
    top5 = AverageMeter('Acc@5', ':6.2f', Summary.AVERAGE)
    progress = ProgressMeter(
        len(val_loader) + (args.distributed and (len(val_loader.sampler) * args.world_size < len(val_loader.dataset))),
        [batch_time, losses, top1, top5],
        prefix='Test: ')

    # switch to evaluate mode
    model.eval()

    run_validate(val_loader)
    if args.distributed:
        top1.all_reduce()
        top5.all_reduce()

    if args.distributed and (len(val_loader.sampler) * args.world_size < len(val_loader.dataset)):
        aux_val_dataset = Subset(val_loader.dataset,
                                 range(len(val_loader.sampler) * args.world_size, len(val_loader.dataset)))
        aux_val_loader = torch.utils.data.DataLoader(
            aux_val_dataset, batch_size=args.batch_size, shuffle=False,
            num_workers=args.workers, pin_memory=True)
        run_validate(aux_val_loader, len(val_loader))

    progress.display_summary()

    return top1.avg


def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, 'model_best.pth.tar')

class Summary(Enum):
    NONE = 0
    AVERAGE = 1
    SUM = 2
    COUNT = 3

class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self, name, fmt=':f', summary_type=Summary.AVERAGE):
        self.name = name
        self.fmt = fmt
        self.summary_type = summary_type
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    def all_reduce(self):
        if torch.cuda.is_available():
            device = torch.device("cuda")
        elif torch.backends.mps.is_available():
            device = torch.device("mps")
        else:
            device = torch.device("cpu")
        total = torch.tensor([self.sum, self.count], dtype=torch.float32, device=device)
        dist.all_reduce(total, dist.ReduceOp.SUM, async_op=False)
        self.sum, self.count = total.tolist()
        self.avg = self.sum / self.count

    def __str__(self):
        fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
        return fmtstr.format(**self.__dict__)

    def summary(self):
        fmtstr = ''
        if self.summary_type is Summary.NONE:
            fmtstr = ''
        elif self.summary_type is Summary.AVERAGE:
            fmtstr = '{name} {avg:.3f}'
        elif self.summary_type is Summary.SUM:
            fmtstr = '{name} {sum:.3f}'
        elif self.summary_type is Summary.COUNT:
            fmtstr = '{name} {count:.3f}'
        else:
            raise ValueError('invalid summary type %r' % self.summary_type)

        return fmtstr.format(**self.__dict__)


class ProgressMeter(object):
    def __init__(self, num_batches, meters, prefix=""):
        self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
        self.meters = meters
        self.prefix = prefix

    def display(self, batch):
        entries = [self.prefix + self.batch_fmtstr.format(batch)]
        entries += [str(meter) for meter in self.meters]
        print('\t'.join(entries))

    def display_summary(self):
        entries = [" *"]
        entries += [meter.summary() for meter in self.meters]
        print(' '.join(entries))

    def _get_batch_fmtstr(self, num_batches):
        num_digits = len(str(num_batches // 1))
        fmt = '{:' + str(num_digits) + 'd}'
        return '[' + fmt + '/' + fmt.format(num_batches) + ']'

def accuracy(output, target, topk=(1,)):
    """Computes the accuracy over the k top predictions for the specified values of k"""
    with torch.no_grad():
        maxk = max(topk)
        batch_size = target.size(0)

        _, pred = output.topk(maxk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(target.view(1, -1).expand_as(pred))

        res = []
        for k in topk:
            correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
            res.append(correct_k.mul_(100.0 / batch_size))
        return res


if __name__ == '__main__':
    main()

PyTorch 昇腾NPU环境训练脚本样例

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
import argparse
import os
import random
import shutil
import time
import warnings
from enum import Enum

import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.transforms as transforms
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import Subset

import torch_npu
from torch_npu.contrib import transfer_to_npu

model_names = sorted(name for name in models.__dict__
    if name.islower() and not name.startswith("__")
    and callable(models.__dict__[name]))

parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR', nargs='?', default='imagenet',
                    help='path to dataset (default: imagenet)')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
                    choices=model_names,
                    help='model architecture: ' +
                        ' | '.join(model_names) +
                        ' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
                    help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                    help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
                    metavar='N',
                    help='mini-batch size (default: 256), this is the total '
                         'batch size of all GPUs on the current node when '
                         'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
                    metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                    help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
                    metavar='W', help='weight decay (default: 1e-4)',
                    dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
                    metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
                    help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
                    help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
                    help='use pre-trained model')
parser.add_argument('--world-size', default=-1, type=int,
                    help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
                    help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
                    help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
                    help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
                    help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
                    help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
                    help='Use multi-processing distributed training to launch '
                         'N processes per node, which has N GPUs. This is the '
                         'fastest way to use PyTorch for either single node or '
                         'multi node data parallel training')
parser.add_argument('--dummy', action='store_true', help="use fake data to benchmark")

best_acc1 = 0


def main():
    args = parser.parse_args()

    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        cudnn.benchmark = False
        warnings.warn('You have chosen to seed training. '
                      'This will turn on the CUDNN deterministic setting, '
                      'which can slow down your training considerably! '
                      'You may see unexpected behavior when restarting '
                      'from checkpoints.')

    if args.gpu is not None:
        warnings.warn('You have chosen a specific GPU. This will completely '
                      'disable data parallelism.')

    if args.dist_url == "env://" and args.world_size == -1:
        args.world_size = int(os.environ["WORLD_SIZE"])

    args.distributed = args.world_size > 1 or args.multiprocessing_distributed

    if torch.cuda.is_available():
        ngpus_per_node = torch.cuda.device_count()
        if ngpus_per_node == 1 and args.dist_backend == "nccl":
            warnings.warn("nccl backend >=2.5 requires GPU count>1, see https://github.com/NVIDIA/nccl/issues/103 perhaps use 'gloo'")
    else:
        ngpus_per_node = 1

    if args.multiprocessing_distributed:
        # Since we have ngpus_per_node processes per node, the total world_size
        # needs to be adjusted accordingly
        args.world_size = ngpus_per_node * args.world_size
        # Use torch.multiprocessing.spawn to launch distributed processes: the
        # main_worker process function
        mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
    else:
        # Simply call main_worker function
        main_worker(args.gpu, ngpus_per_node, args)


def main_worker(gpu, ngpus_per_node, args):
    global best_acc1
    args.gpu = gpu

    if args.gpu is not None:
        print("Use GPU: {} for training".format(args.gpu))

    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if args.multiprocessing_distributed:
            # For multiprocessing distributed training, rank needs to be the
            # global rank among all the processes
            args.rank = args.rank * ngpus_per_node + gpu
        dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                world_size=args.world_size, rank=args.rank)
    # create model
    if args.pretrained:
        print("=> using pre-trained model '{}'".format(args.arch))
        model = models.__dict__[args.arch](pretrained=True)
    else:
        print("=> creating model '{}'".format(args.arch))
        model = models.__dict__[args.arch]()
    if not torch.cuda.is_available() and not torch.backends.mps.is_available():
        print('using CPU, this will be slow')
    elif args.distributed:
        # For multiprocessing distributed, DistributedDataParallel constructor
        # should always set the single device scope, otherwise,
        # DistributedDataParallel will use all available devices.
        if torch.cuda.is_available():
            if args.gpu is not None:
                torch.cuda.set_device(args.gpu)
                model.cuda(args.gpu)
                # When using a single GPU per process and per
                # DistributedDataParallel, we need to divide the batch size
                # ourselves based on the total number of GPUs of the current node.
                args.batch_size = int(args.batch_size / ngpus_per_node)
                args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
                model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
            else:
                model.cuda()
                # DistributedDataParallel will divide and allocate batch_size to all
                # available GPUs if device_ids are not set
                model = torch.nn.parallel.DistributedDataParallel(model)
    elif args.gpu is not None and torch.cuda.is_available():
        torch.cuda.set_device(args.gpu)
        model = model.cuda(args.gpu)
    elif torch.backends.mps.is_available():
        device = torch.device("mps")
        model = model.to(device)
    else:
        # DataParallel will divide and allocate batch_size to all available GPUs
        if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
            model.features = torch.nn.DataParallel(model.features)
            model.cuda()
        else:
            model = torch.nn.DataParallel(model).cuda()

    if torch.cuda.is_available():
        if args.gpu:
            device = torch.device('cuda:{}'.format(args.gpu))
        else:
            device = torch.device("cuda")
    elif torch.backends.mps.is_available():
        device = torch.device("mps")
    else:
        device = torch.device("cpu")
    # define loss function (criterion), optimizer, and learning rate scheduler
    criterion = nn.CrossEntropyLoss().to(device)

    optimizer = torch.optim.SGD(model.parameters(), args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
    scheduler = StepLR(optimizer, step_size=30, gamma=0.1)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            if args.gpu is None:
                checkpoint = torch.load(args.resume)
            elif torch.cuda.is_available():
                # Map model to be loaded to specified single gpu.
                loc = 'cuda:{}'.format(args.gpu)
                checkpoint = torch.load(args.resume, map_location=loc)
            args.start_epoch = checkpoint['epoch']
            best_acc1 = checkpoint['best_acc1']
            if args.gpu is not None:
                # best_acc1 may be from a checkpoint from a different GPU
                best_acc1 = best_acc1.to(args.gpu)
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            scheduler.load_state_dict(checkpoint['scheduler'])
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))


    # Data loading code
    if args.dummy:
        print("=> Dummy data is used!")
        train_dataset = datasets.FakeData(1281167, (3, 224, 224), 1000, transforms.ToTensor())
        val_dataset = datasets.FakeData(50000, (3, 224, 224), 1000, transforms.ToTensor())
    else:
        traindir = os.path.join(args.data, 'train')
        valdir = os.path.join(args.data, 'val')
        normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

        train_dataset = datasets.ImageFolder(
            traindir,
            transforms.Compose([
                transforms.RandomResizedCrop(224),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalize,
            ]))

        val_dataset = datasets.ImageFolder(
            valdir,
            transforms.Compose([
                transforms.Resize(256),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalize,
            ]))

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
        val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False, drop_last=True)
    else:
        train_sampler = None
        val_sampler = None

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
        num_workers=args.workers, pin_memory=True, sampler=train_sampler)

    val_loader = torch.utils.data.DataLoader(
        val_dataset, batch_size=args.batch_size, shuffle=False,
        num_workers=args.workers, pin_memory=True, sampler=val_sampler)

    if args.evaluate:
        validate(val_loader, model, criterion, args)
        return

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch, device, args)

        # evaluate on validation set
        acc1 = validate(val_loader, model, criterion, args)

        scheduler.step()

        # remember best acc@1 and save checkpoint
        is_best = acc1 > best_acc1
        best_acc1 = max(acc1, best_acc1)

        if not args.multiprocessing_distributed or (args.multiprocessing_distributed
                and args.rank % ngpus_per_node == 0):
            save_checkpoint({
                'epoch': epoch + 1,
                'arch': args.arch,
                'state_dict': model.state_dict(),
                'best_acc1': best_acc1,
                'optimizer' : optimizer.state_dict(),
                'scheduler' : scheduler.state_dict()
            }, is_best)


def train(train_loader, model, criterion, optimizer, epoch, device, args):
    batch_time = AverageMeter('Time', ':6.3f')
    data_time = AverageMeter('Data', ':6.3f')
    losses = AverageMeter('Loss', ':.4e')
    top1 = AverageMeter('Acc@1', ':6.2f')
    top5 = AverageMeter('Acc@5', ':6.2f')
    progress = ProgressMeter(
        len(train_loader),
        [batch_time, data_time, losses, top1, top5],
        prefix="Epoch: [{}]".format(epoch))

    # switch to train mode
    model.train()

    end = time.time()
    for i, (images, target) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        # move data to the same device as model
        images = images.to(device, non_blocking=True)
        target = target.to(device, non_blocking=True)

        # compute output
        output = model(images)
        loss = criterion(output, target)

        # measure accuracy and record loss
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        losses.update(loss.item(), images.size(0))
        top1.update(acc1[0], images.size(0))
        top5.update(acc5[0], images.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.print_freq == 0:
            progress.display(i + 1)


def validate(val_loader, model, criterion, args):

    def run_validate(loader, base_progress=0):
        with torch.no_grad():
            end = time.time()
            for i, (images, target) in enumerate(loader):
                i = base_progress + i
                if args.gpu is not None and torch.cuda.is_available():
                    images = images.cuda(args.gpu, non_blocking=True)
                if torch.backends.mps.is_available():
                    images = images.to('mps')
                    target = target.to('mps')
                if torch.cuda.is_available():
                    target = target.cuda(args.gpu, non_blocking=True)

                # compute output
                output = model(images)
                loss = criterion(output, target)

                # measure accuracy and record loss
                acc1, acc5 = accuracy(output, target, topk=(1, 5))
                losses.update(loss.item(), images.size(0))
                top1.update(acc1[0], images.size(0))
                top5.update(acc5[0], images.size(0))

                # measure elapsed time
                batch_time.update(time.time() - end)
                end = time.time()

                if i % args.print_freq == 0:
                    progress.display(i + 1)

    batch_time = AverageMeter('Time', ':6.3f', Summary.NONE)
    losses = AverageMeter('Loss', ':.4e', Summary.NONE)
    top1 = AverageMeter('Acc@1', ':6.2f', Summary.AVERAGE)
    top5 = AverageMeter('Acc@5', ':6.2f', Summary.AVERAGE)
    progress = ProgressMeter(
        len(val_loader) + (args.distributed and (len(val_loader.sampler) * args.world_size < len(val_loader.dataset))),
        [batch_time, losses, top1, top5],
        prefix='Test: ')

    # switch to evaluate mode
    model.eval()

    run_validate(val_loader)
    if args.distributed:
        top1.all_reduce()
        top5.all_reduce()

    if args.distributed and (len(val_loader.sampler) * args.world_size < len(val_loader.dataset)):
        aux_val_dataset = Subset(val_loader.dataset,
                                 range(len(val_loader.sampler) * args.world_size, len(val_loader.dataset)))
        aux_val_loader = torch.utils.data.DataLoader(
            aux_val_dataset, batch_size=args.batch_size, shuffle=False,
            num_workers=args.workers, pin_memory=True)
        run_validate(aux_val_loader, len(val_loader))

    progress.display_summary()

    return top1.avg


def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, 'model_best.pth.tar')

class Summary(Enum):
    NONE = 0
    AVERAGE = 1
    SUM = 2
    COUNT = 3

class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self, name, fmt=':f', summary_type=Summary.AVERAGE):
        self.name = name
        self.fmt = fmt
        self.summary_type = summary_type
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    def all_reduce(self):
        if torch.cuda.is_available():
            device = torch.device("cuda")
        elif torch.backends.mps.is_available():
            device = torch.device("mps")
        else:
            device = torch.device("cpu")
        total = torch.tensor([self.sum, self.count], dtype=torch.float32, device=device)
        dist.all_reduce(total, dist.ReduceOp.SUM, async_op=False)
        self.sum, self.count = total.tolist()
        self.avg = self.sum / self.count

    def __str__(self):
        fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
        return fmtstr.format(**self.__dict__)

    def summary(self):
        fmtstr = ''
        if self.summary_type is Summary.NONE:
            fmtstr = ''
        elif self.summary_type is Summary.AVERAGE:
            fmtstr = '{name} {avg:.3f}'
        elif self.summary_type is Summary.SUM:
            fmtstr = '{name} {sum:.3f}'
        elif self.summary_type is Summary.COUNT:
            fmtstr = '{name} {count:.3f}'
        else:
            raise ValueError('invalid summary type %r' % self.summary_type)

        return fmtstr.format(**self.__dict__)


class ProgressMeter(object):
    def __init__(self, num_batches, meters, prefix=""):
        self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
        self.meters = meters
        self.prefix = prefix

    def display(self, batch):
        entries = [self.prefix + self.batch_fmtstr.format(batch)]
        entries += [str(meter) for meter in self.meters]
        print('\t'.join(entries))

    def display_summary(self):
        entries = [" *"]
        entries += [meter.summary() for meter in self.meters]
        print(' '.join(entries))

    def _get_batch_fmtstr(self, num_batches):
        num_digits = len(str(num_batches // 1))
        fmt = '{:' + str(num_digits) + 'd}'
        return '[' + fmt + '/' + fmt.format(num_batches) + ']'

def accuracy(output, target, topk=(1,)):
    """Computes the accuracy over the k top predictions for the specified values of k"""
    with torch.no_grad():
        maxk = max(topk)
        batch_size = target.size(0)

        _, pred = output.topk(maxk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(target.view(1, -1).expand_as(pred))

        res = []
        for k in topk:
            correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
            res.append(correct_k.mul_(100.0 / batch_size))
        return res


if __name__ == '__main__':
    main()

PyTorch训练前配置检查代码样例

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
import argparse
import os
import random
import shutil
import time
import warnings
from enum import Enum

import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.transforms as transforms
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import Subset

import torch_npu
from torch_npu.contrib import transfer_to_npu
from msprobe.core.config_check import ConfigChecker
ConfigChecker.apply_patches("pytorch")

model_names = sorted(name for name in models.__dict__
    if name.islower() and not name.startswith("__")
    and callable(models.__dict__[name]))

parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR', nargs='?', default='imagenet',
                    help='path to dataset (default: imagenet)')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
                    choices=model_names,
                    help='model architecture: ' +
                        ' | '.join(model_names) +
                        ' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
                    help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                    help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
                    metavar='N',
                    help='mini-batch size (default: 256), this is the total '
                         'batch size of all GPUs on the current node when '
                         'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
                    metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                    help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
                    metavar='W', help='weight decay (default: 1e-4)',
                    dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
                    metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
                    help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
                    help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
                    help='use pre-trained model')
parser.add_argument('--world-size', default=-1, type=int,
                    help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
                    help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
                    help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
                    help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
                    help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
                    help='GPU id to use.')
parser.add_argument('--no-accel', action='store_true',
                    help='disables accelerator')
parser.add_argument('--multiprocessing-distributed', action='store_true',
                    help='Use multi-processing distributed training to launch '
                         'N processes per node, which has N GPUs. This is the '
                         'fastest way to use PyTorch for either single node or '
                         'multi node data parallel training')
parser.add_argument('--dummy', action='store_true', help="use fake data to benchmark")

best_acc1 = 0


def main():
    args = parser.parse_args()

    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        cudnn.benchmark = False
        warnings.warn('You have chosen to seed training. '
                      'This will turn on the CUDNN deterministic setting, '
                      'which can slow down your training considerably! '
                      'You may see unexpected behavior when restarting '
                      'from checkpoints.')

    if args.gpu is not None:
        warnings.warn('You have chosen a specific GPU. This will completely '
                      'disable data parallelism.')

    if args.dist_url == "env://" and args.world_size == -1:
        args.world_size = int(os.environ["WORLD_SIZE"])

    args.distributed = args.world_size > 1 or args.multiprocessing_distributed

    use_accel = not args.no_accel and torch.accelerator.is_available()

    if use_accel:
        device = torch.accelerator.current_accelerator()
    else:
        device = torch.device("cpu")

    print(f"Using device: {device}")

    if device.type =='cuda':
        ngpus_per_node = torch.accelerator.device_count()
        if ngpus_per_node == 1 and args.dist_backend == "nccl":
            warnings.warn("nccl backend >=2.5 requires GPU count>1, see https://github.com/NVIDIA/nccl/issues/103 perhaps use 'gloo'")
    else:
        ngpus_per_node = 1

    if args.multiprocessing_distributed:
        # Since we have ngpus_per_node processes per node, the total world_size
        # needs to be adjusted accordingly
        args.world_size = ngpus_per_node * args.world_size
        # Use torch.multiprocessing.spawn to launch distributed processes: the
        # main_worker process function
        mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
    else:
        # Simply call main_worker function
        main_worker(args.gpu, ngpus_per_node, args)


def main_worker(gpu, ngpus_per_node, args):
    global best_acc1
    args.gpu = gpu

    use_accel = not args.no_accel and torch.accelerator.is_available()

    if use_accel:
        if args.gpu is not None:
            torch.accelerator.set_device_index(args.gpu)
        device = torch.accelerator.current_accelerator()
    else:
        device = torch.device("cpu")

    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if args.multiprocessing_distributed:
            # For multiprocessing distributed training, rank needs to be the
            # global rank among all the processes
            args.rank = args.rank * ngpus_per_node + gpu
        dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                world_size=args.world_size, rank=args.rank)
    # create model
    if args.pretrained:
        print("=> using pre-trained model '{}'".format(args.arch))
        model = models.__dict__[args.arch](pretrained=True)
    else:
        print("=> creating model '{}'".format(args.arch))
        model = models.__dict__[args.arch]()

    from msprobe.core.config_check import ConfigChecker
    ConfigChecker(model=model, output_zip_path="./config_check_pack.zip", fmk="pytorch")

    if not use_accel:
        print('using CPU, this will be slow')
    elif args.distributed:
        # For multiprocessing distributed, DistributedDataParallel constructor
        # should always set the single device scope, otherwise,
        # DistributedDataParallel will use all available devices.
        if device.type == 'cuda':
            if args.gpu is not None:
                torch.cuda.set_device(args.gpu)
                model.cuda(device)
                # When using a single GPU per process and per
                # DistributedDataParallel, we need to divide the batch size
                # ourselves based on the total number of GPUs of the current node.
                args.batch_size = int(args.batch_size / ngpus_per_node)
                args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
                model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
            else:
                model.cuda()
                # DistributedDataParallel will divide and allocate batch_size to all
                # available GPUs if device_ids are not set
                model = torch.nn.parallel.DistributedDataParallel(model)
    elif device.type == 'cuda':
        # DataParallel will divide and allocate batch_size to all available GPUs
        if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
            model.features = torch.nn.DataParallel(model.features)
            model.cuda()
        else:
            model = torch.nn.DataParallel(model).cuda()
    else:
        model.to(device)


    # define loss function (criterion), optimizer, and learning rate scheduler
    criterion = nn.CrossEntropyLoss().to(device)

    optimizer = torch.optim.SGD(model.parameters(), args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
    scheduler = StepLR(optimizer, step_size=30, gamma=0.1)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            if args.gpu is None:
                checkpoint = torch.load(args.resume)
            else:
                # Map model to be loaded to specified single gpu.
                loc = f'{device.type}:{args.gpu}'
                checkpoint = torch.load(args.resume, map_location=loc)
            args.start_epoch = checkpoint['epoch']
            best_acc1 = checkpoint['best_acc1']
            if args.gpu is not None:
                # best_acc1 may be from a checkpoint from a different GPU
                best_acc1 = best_acc1.to(args.gpu)
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            scheduler.load_state_dict(checkpoint['scheduler'])
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))


    # Data loading code
    if args.dummy:
        print("=> Dummy data is used!")
        train_dataset = datasets.FakeData(1281167, (3, 224, 224), 1000, transforms.ToTensor())
        val_dataset = datasets.FakeData(50000, (3, 224, 224), 1000, transforms.ToTensor())
    else:
        traindir = os.path.join(args.data, 'train')
        valdir = os.path.join(args.data, 'val')
        normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

        train_dataset = datasets.ImageFolder(
            traindir,
            transforms.Compose([
                transforms.RandomResizedCrop(224),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalize,
            ]))

        val_dataset = datasets.ImageFolder(
            valdir,
            transforms.Compose([
                transforms.Resize(256),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalize,
            ]))

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
        val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False, drop_last=True)
    else:
        train_sampler = None
        val_sampler = None

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
        num_workers=args.workers, pin_memory=True, sampler=train_sampler)

    val_loader = torch.utils.data.DataLoader(
        val_dataset, batch_size=args.batch_size, shuffle=False,
        num_workers=args.workers, pin_memory=True, sampler=val_sampler)

    if args.evaluate:
        validate(val_loader, model, criterion, args)
        return

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch, device, args)

        # evaluate on validation set
        acc1 = validate(val_loader, model, criterion, args)

        scheduler.step()

        # remember best acc@1 and save checkpoint
        is_best = acc1 > best_acc1
        best_acc1 = max(acc1, best_acc1)

        if not args.multiprocessing_distributed or (args.multiprocessing_distributed
                and args.rank % ngpus_per_node == 0):
            save_checkpoint({
                'epoch': epoch + 1,
                'arch': args.arch,
                'state_dict': model.state_dict(),
                'best_acc1': best_acc1,
                'optimizer' : optimizer.state_dict(),
                'scheduler' : scheduler.state_dict()
            }, is_best)


def train(train_loader, model, criterion, optimizer, epoch, device, args):

    use_accel = not args.no_accel and torch.accelerator.is_available()

    batch_time = AverageMeter('Time', use_accel, ':6.3f', Summary.NONE)
    data_time = AverageMeter('Data', use_accel, ':6.3f', Summary.NONE)
    losses = AverageMeter('Loss', use_accel, ':.4e', Summary.NONE)
    top1 = AverageMeter('Acc@1', use_accel, ':6.2f', Summary.NONE)
    top5 = AverageMeter('Acc@5', use_accel, ':6.2f', Summary.NONE)
    progress = ProgressMeter(
        len(train_loader),
        [batch_time, data_time, losses, top1, top5],
        prefix="Epoch: [{}]".format(epoch))

    # switch to train mode
    model.train()

    end = time.time()
    for i, (images, target) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        # move data to the same device as model
        images = images.to(device, non_blocking=True)
        target = target.to(device, non_blocking=True)

        # compute output
        output = model(images)
        loss = criterion(output, target)

        # measure accuracy and record loss
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        losses.update(loss.item(), images.size(0))
        top1.update(acc1[0], images.size(0))
        top5.update(acc5[0], images.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.print_freq == 0:
            progress.display(i + 1)


def validate(val_loader, model, criterion, args):

    use_accel = not args.no_accel and torch.accelerator.is_available()

    def run_validate(loader, base_progress=0):

        if use_accel:
            device = torch.accelerator.current_accelerator()
        else:
            device = torch.device("cpu")

        with torch.no_grad():
            end = time.time()
            for i, (images, target) in enumerate(loader):
                i = base_progress + i
                if use_accel:
                    if args.gpu is not None and device.type=='cuda':
                        torch.accelerator.set_device_index(argps.gpu)
                        images = images.cuda(args.gpu, non_blocking=True)
                        target = target.cuda(args.gpu, non_blocking=True)
                    else:
                        images = images.to(device)
                        target = target.to(device)

                # compute output
                output = model(images)
                loss = criterion(output, target)

                # measure accuracy and record loss
                acc1, acc5 = accuracy(output, target, topk=(1, 5))
                losses.update(loss.item(), images.size(0))
                top1.update(acc1[0], images.size(0))
                top5.update(acc5[0], images.size(0))

                # measure elapsed time
                batch_time.update(time.time() - end)
                end = time.time()

                if i % args.print_freq == 0:
                    progress.display(i + 1)

    batch_time = AverageMeter('Time', use_accel, ':6.3f', Summary.NONE)
    losses = AverageMeter('Loss', use_accel, ':.4e', Summary.NONE)
    top1 = AverageMeter('Acc@1', use_accel, ':6.2f', Summary.AVERAGE)
    top5 = AverageMeter('Acc@5', use_accel, ':6.2f', Summary.AVERAGE)
    progress = ProgressMeter(
        len(val_loader) + (args.distributed and (len(val_loader.sampler) * args.world_size < len(val_loader.dataset))),
        [batch_time, losses, top1, top5],
        prefix='Test: ')

    # switch to evaluate mode
    model.eval()

    run_validate(val_loader)
    if args.distributed:
        top1.all_reduce()
        top5.all_reduce()

    if args.distributed and (len(val_loader.sampler) * args.world_size < len(val_loader.dataset)):
        aux_val_dataset = Subset(val_loader.dataset,
                                 range(len(val_loader.sampler) * args.world_size, len(val_loader.dataset)))
        aux_val_loader = torch.utils.data.DataLoader(
            aux_val_dataset, batch_size=args.batch_size, shuffle=False,
            num_workers=args.workers, pin_memory=True)
        run_validate(aux_val_loader, len(val_loader))

    progress.display_summary()

    return top1.avg


def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, 'model_best.pth.tar')

class Summary(Enum):
    NONE = 0
    AVERAGE = 1
    SUM = 2
    COUNT = 3

class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self, name, use_accel, fmt=':f', summary_type=Summary.AVERAGE):
        self.name = name
        self.use_accel = use_accel
        self.fmt = fmt
        self.summary_type = summary_type
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    def all_reduce(self):    
        if use_accel:
            device = torch.accelerator.current_accelerator()
        else:
            device = torch.device("cpu")
        total = torch.tensor([self.sum, self.count], dtype=torch.float32, device=device)
        dist.all_reduce(total, dist.ReduceOp.SUM, async_op=False)
        self.sum, self.count = total.tolist()
        self.avg = self.sum / self.count

    def __str__(self):
        fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
        return fmtstr.format(**self.__dict__)

    def summary(self):
        fmtstr = ''
        if self.summary_type is Summary.NONE:
            fmtstr = ''
        elif self.summary_type is Summary.AVERAGE:
            fmtstr = '{name} {avg:.3f}'
        elif self.summary_type is Summary.SUM:
            fmtstr = '{name} {sum:.3f}'
        elif self.summary_type is Summary.COUNT:
            fmtstr = '{name} {count:.3f}'
        else:
            raise ValueError('invalid summary type %r' % self.summary_type)

        return fmtstr.format(**self.__dict__)


class ProgressMeter(object):
    def __init__(self, num_batches, meters, prefix=""):
        self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
        self.meters = meters
        self.prefix = prefix

    def display(self, batch):
        entries = [self.prefix + self.batch_fmtstr.format(batch)]
        entries += [str(meter) for meter in self.meters]
        print('\t'.join(entries))

    def display_summary(self):
        entries = [" *"]
        entries += [meter.summary() for meter in self.meters]
        print(' '.join(entries))

    def _get_batch_fmtstr(self, num_batches):
        num_digits = len(str(num_batches // 1))
        fmt = '{:' + str(num_digits) + 'd}'
        return '[' + fmt + '/' + fmt.format(num_batches) + ']'

def accuracy(output, target, topk=(1,)):
    """Computes the accuracy over the k top predictions for the specified values of k"""
    with torch.no_grad():
        maxk = max(topk)
        batch_size = target.size(0)

        _, pred = output.topk(maxk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(target.view(1, -1).expand_as(pred))

        res = []
        for k in topk:
            correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
            res.append(correct_k.mul_(100.0 / batch_size))
        return res


if __name__ == '__main__':
    main()

PyTorch训练状态监控代码样例

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import argparse
import os
import random
import shutil
import time
import warnings
from enum import Enum
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.transforms as transforms
# from torch.optim.lr_scheduler import StepLR
from torch.utils.data import Subset
import torch_npu
from torch_npu.contrib import transfer_to_npu
from msprobe.pytorch import TrainerMon
monitor = TrainerMon(
    config_file_path="./monitor_config.json",
    params_have_main_grad=False,  # 权重是否使用main_grad,通常megatron为True,deepspeed为False。默认为True。
) 
model_names = sorted(name for name in models.__dict__
    if name.islower() and not name.startswith("__")
    and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR', nargs='?', default='imagenet',
                    help='path to dataset (default: imagenet)')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
                    choices=model_names,
                    help='model architecture: ' +
                        ' | '.join(model_names) +
                        ' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
                    help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                    help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
                    metavar='N',
                    help='mini-batch size (default: 256), this is the total '
                         'batch size of all GPUs on the current node when '
                         'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
                    metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                    help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
                    metavar='W', help='weight decay (default: 1e-4)',
                    dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
                    metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
                    help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
                    help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
                    help='use pre-trained model')
parser.add_argument('--world-size', default=-1, type=int,
                    help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
                    help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
                    help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
                    help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
                    help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
                    help='GPU id to use.')
parser.add_argument('--no-accel', action='store_true',
                    help='disables accelerator')
parser.add_argument('--multiprocessing-distributed', action='store_true',
                    help='Use multi-processing distributed training to launch '
                         'N processes per node, which has N GPUs. This is the '
                         'fastest way to use PyTorch for either single node or '
                         'multi node data parallel training')
parser.add_argument('--dummy', action='store_true', help="use fake data to benchmark")
best_acc1 = 0
def main():
    args = parser.parse_args()
    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        cudnn.benchmark = False
        warnings.warn('You have chosen to seed training. '
                      'This will turn on the CUDNN deterministic setting, '
                      'which can slow down your training considerably! '
                      'You may see unexpected behavior when restarting '
                      'from checkpoints.')
    if args.gpu is not None:
        warnings.warn('You have chosen a specific GPU. This will completely '
                      'disable data parallelism.')
    if args.dist_url == "env://" and args.world_size == -1:
        args.world_size = int(os.environ["WORLD_SIZE"])
    args.distributed = args.world_size > 1 or args.multiprocessing_distributed
    use_accel = not args.no_accel and torch.accelerator.is_available()
    if use_accel:
        device = torch.accelerator.current_accelerator()
    else:
        device = torch.device("cpu")
    print(f"Using device: {device}")
    if device.type =='cuda':
        ngpus_per_node = torch.accelerator.device_count()
        if ngpus_per_node == 1 and args.dist_backend == "nccl":
            warnings.warn("nccl backend >=2.5 requires GPU count>1, see https://github.com/NVIDIA/nccl/issues/103 perhaps use 'gloo'")
    else:
        ngpus_per_node = 1
    if args.multiprocessing_distributed:
        # Since we have ngpus_per_node processes per node, the total world_size
        # needs to be adjusted accordingly
        args.world_size = ngpus_per_node * args.world_size
        # Use torch.multiprocessing.spawn to launch distributed processes: the
        # main_worker process function
        mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
    else:
        # Simply call main_worker function
        main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
    global best_acc1
    args.gpu = gpu
    use_accel = not args.no_accel and torch.accelerator.is_available()
    if use_accel:
        if args.gpu is not None:
            torch.accelerator.set_device_index(args.gpu)
        device = torch.accelerator.current_accelerator()
    else:
        device = torch.device("cpu")
    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if args.multiprocessing_distributed:
            # For multiprocessing distributed training, rank needs to be the
            # global rank among all the processes
            args.rank = args.rank * ngpus_per_node + gpu
        dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                world_size=args.world_size, rank=args.rank)
    # create model
    if args.pretrained:
        print("=> using pre-trained model '{}'".format(args.arch))
        model = models.__dict__[args.arch](pretrained=True)
    else:
        print("=> creating model '{}'".format(args.arch))
        model = models.__dict__[args.arch]()
    if not use_accel:
        print('using CPU, this will be slow')
    elif args.distributed:
        # For multiprocessing distributed, DistributedDataParallel constructor
        # should always set the single device scope, otherwise,
        # DistributedDataParallel will use all available devices.
        if device.type == 'cuda':
            if args.gpu is not None:
                torch.cuda.set_device(args.gpu)
                model.cuda(device)
                # When using a single GPU per process and per
                # DistributedDataParallel, we need to divide the batch size
                # ourselves based on the total number of GPUs of the current node.
                args.batch_size = int(args.batch_size / ngpus_per_node)
                args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
                model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
            else:
                model.cuda()
                # DistributedDataParallel will divide and allocate batch_size to all
                # available GPUs if device_ids are not set
                model = torch.nn.parallel.DistributedDataParallel(model)
    elif device.type == 'cuda':
        # DataParallel will divide and allocate batch_size to all available GPUs
        if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
            model.features = torch.nn.DataParallel(model.features)
            model.cuda()
        else:
            model = torch.nn.DataParallel(model).cuda()
    else:
        model.to(device)
    # define loss function (criterion), optimizer, and learning rate scheduler
    criterion = nn.CrossEntropyLoss().to(device)
    optimizer = torch.optim.SGD(model.parameters(), args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)
    
    """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
    # scheduler = StepLR(optimizer, step_size=30, gamma=0.1)
    
    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            if args.gpu is None:
                checkpoint = torch.load(args.resume)
            else:
                # Map model to be loaded to specified single gpu.
                loc = f'{device.type}:{args.gpu}'
                checkpoint = torch.load(args.resume, map_location=loc)
            args.start_epoch = checkpoint['epoch']
            best_acc1 = checkpoint['best_acc1']
            if args.gpu is not None:
                # best_acc1 may be from a checkpoint from a different GPU
                best_acc1 = best_acc1.to(args.gpu)
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            # scheduler.load_state_dict(checkpoint['scheduler'])
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))
    # Data loading code
    if args.dummy:
        print("=> Dummy data is used!")
        train_dataset = datasets.FakeData(1281167, (3, 224, 224), 1000, transforms.ToTensor())
        val_dataset = datasets.FakeData(50000, (3, 224, 224), 1000, transforms.ToTensor())
    else:
        traindir = os.path.join(args.data, 'train')
        valdir = os.path.join(args.data, 'val')
        normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
        train_dataset = datasets.ImageFolder(
            traindir,
            transforms.Compose([
                transforms.RandomResizedCrop(224),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalize,
            ]))
        val_dataset = datasets.ImageFolder(
            valdir,
            transforms.Compose([
                transforms.Resize(256),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalize,
            ]))
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
        val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False, drop_last=True)
    else:
        train_sampler = None
        val_sampler = None
    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
        num_workers=args.workers, pin_memory=True, sampler=train_sampler)
    val_loader = torch.utils.data.DataLoader(
        val_dataset, batch_size=args.batch_size, shuffle=False,
        num_workers=args.workers, pin_memory=True, sampler=val_sampler)
    if args.evaluate:
        validate(val_loader, model, criterion, args)
        return
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch, device, args)
        # evaluate on validation set
        acc1 = validate(val_loader, model, criterion, args)
        
        # scheduler.step()
        
        # remember best acc@1 and save checkpoint
        is_best = acc1 > best_acc1
        best_acc1 = max(acc1, best_acc1)
        if not args.multiprocessing_distributed or (args.multiprocessing_distributed
                and args.rank % ngpus_per_node == 0):
            save_checkpoint({
                'epoch': epoch + 1,
                'arch': args.arch,
                'state_dict': model.state_dict(),
                'best_acc1': best_acc1,
                'optimizer' : optimizer.state_dict(),
                # 'scheduler' : scheduler.state_dict()
            }, is_best)
def train(train_loader, model, criterion, optimizer, epoch, device, args):
    
    use_accel = not args.no_accel and torch.accelerator.is_available()
    batch_time = AverageMeter('Time', use_accel, ':6.3f', Summary.NONE)
    data_time = AverageMeter('Data', use_accel, ':6.3f', Summary.NONE)
    losses = AverageMeter('Loss', use_accel, ':.4e', Summary.NONE)
    top1 = AverageMeter('Acc@1', use_accel, ':6.2f', Summary.NONE)
    top5 = AverageMeter('Acc@5', use_accel, ':6.2f', Summary.NONE)
    progress = ProgressMeter(
        len(train_loader),
        [batch_time, data_time, losses, top1, top5],
        prefix="Epoch: [{}]".format(epoch))
    # switch to train mode
    model.train()
    
    # 挂载监控对象
    monitor.set_monitor(
        model,
        grad_acc_steps=1,
        optimizer=optimizer,
        dp_group=None,
        tp_group=None,
        start_iteration=0  # 断点续训时提供当前iteration,默认从0开始
    ) 
    end = time.time()
    for i, (images, target) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)
        # move data to the same device as model
        images = images.to(device, non_blocking=True)
        target = target.to(device, non_blocking=True)
        # compute output
        output = model(images)
        loss = criterion(output, target)
        # measure accuracy and record loss
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        losses.update(loss.item(), images.size(0))
        top1.update(acc1[0], images.size(0))
        top5.update(acc5[0], images.size(0))
        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()
        if i % args.print_freq == 0:
            progress.display(i + 1)
def validate(val_loader, model, criterion, args):
    use_accel = not args.no_accel and torch.accelerator.is_available()
    def run_validate(loader, base_progress=0):
        if use_accel:
            device = torch.accelerator.current_accelerator()
        else:
            device = torch.device("cpu")
        with torch.no_grad():
            end = time.time()
            for i, (images, target) in enumerate(loader):
                i = base_progress + i
                if use_accel:
                    if args.gpu is not None and device.type=='cuda':
                        torch.accelerator.set_device_index(argps.gpu)
                        images = images.cuda(args.gpu, non_blocking=True)
                        target = target.cuda(args.gpu, non_blocking=True)
                    else:
                        images = images.to(device)
                        target = target.to(device)
                # compute output
                output = model(images)
                loss = criterion(output, target)
                # measure accuracy and record loss
                acc1, acc5 = accuracy(output, target, topk=(1, 5))
                losses.update(loss.item(), images.size(0))
                top1.update(acc1[0], images.size(0))
                top5.update(acc5[0], images.size(0))
                # measure elapsed time
                batch_time.update(time.time() - end)
                end = time.time()
                if i % args.print_freq == 0:
                    progress.display(i + 1)
    batch_time = AverageMeter('Time', use_accel, ':6.3f', Summary.NONE)
    losses = AverageMeter('Loss', use_accel, ':.4e', Summary.NONE)
    top1 = AverageMeter('Acc@1', use_accel, ':6.2f', Summary.AVERAGE)
    top5 = AverageMeter('Acc@5', use_accel, ':6.2f', Summary.AVERAGE)
    progress = ProgressMeter(
        len(val_loader) + (args.distributed and (len(val_loader.sampler) * args.world_size < len(val_loader.dataset))),
        [batch_time, losses, top1, top5],
        prefix='Test: ')
    # switch to evaluate mode
    model.eval()
    run_validate(val_loader)
    if args.distributed:
        top1.all_reduce()
        top5.all_reduce()
    if args.distributed and (len(val_loader.sampler) * args.world_size < len(val_loader.dataset)):
        aux_val_dataset = Subset(val_loader.dataset,
                                 range(len(val_loader.sampler) * args.world_size, len(val_loader.dataset)))
        aux_val_loader = torch.utils.data.DataLoader(
            aux_val_dataset, batch_size=args.batch_size, shuffle=False,
            num_workers=args.workers, pin_memory=True)
        run_validate(aux_val_loader, len(val_loader))
    progress.display_summary()
    return top1.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, 'model_best.pth.tar')
class Summary(Enum):
    NONE = 0
    AVERAGE = 1
    SUM = 2
    COUNT = 3
class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self, name, use_accel, fmt=':f', summary_type=Summary.AVERAGE):
        self.name = name
        self.use_accel = use_accel
        self.fmt = fmt
        self.summary_type = summary_type
        self.reset()
    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0
    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count
    def all_reduce(self):    
        if use_accel:
            device = torch.accelerator.current_accelerator()
        else:
            device = torch.device("cpu")
        total = torch.tensor([self.sum, self.count], dtype=torch.float32, device=device)
        dist.all_reduce(total, dist.ReduceOp.SUM, async_op=False)
        self.sum, self.count = total.tolist()
        self.avg = self.sum / self.count
    def __str__(self):
        fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
        return fmtstr.format(**self.__dict__)
    
    def summary(self):
        fmtstr = ''
        if self.summary_type is Summary.NONE:
            fmtstr = ''
        elif self.summary_type is Summary.AVERAGE:
            fmtstr = '{name} {avg:.3f}'
        elif self.summary_type is Summary.SUM:
            fmtstr = '{name} {sum:.3f}'
        elif self.summary_type is Summary.COUNT:
            fmtstr = '{name} {count:.3f}'
        else:
            raise ValueError('invalid summary type %r' % self.summary_type)
        
        return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
    def __init__(self, num_batches, meters, prefix=""):
        self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
        self.meters = meters
        self.prefix = prefix
    def display(self, batch):
        entries = [self.prefix + self.batch_fmtstr.format(batch)]
        entries += [str(meter) for meter in self.meters]
        print('\t'.join(entries))
        
    def display_summary(self):
        entries = [" *"]
        entries += [meter.summary() for meter in self.meters]
        print(' '.join(entries))
    def _get_batch_fmtstr(self, num_batches):
        num_digits = len(str(num_batches // 1))
        fmt = '{:' + str(num_digits) + 'd}'
        return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def accuracy(output, target, topk=(1,)):
    """Computes the accuracy over the k top predictions for the specified values of k"""
    with torch.no_grad():
        maxk = max(topk)
        batch_size = target.size(0)
        _, pred = output.topk(maxk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(target.view(1, -1).expand_as(pred))
        res = []
        for k in topk:
            correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
            res.append(correct_k.mul_(100.0 / batch_size))
        return res
if __name__ == '__main__':
    main()

PyTorch精度数据采集代码样例

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
import argparse
import os
import random
import shutil
import time
import warnings
from enum import Enum

import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.transforms as transforms
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import Subset

import torch_npu
from torch_npu.contrib import transfer_to_npu

from msprobe.pytorch import PrecisionDebugger, seed_all
seed_all(seed=1234, mode=True)  # 固定随机种子,开启确定性计算,保证每次模型执行数据均保持一致

model_names = sorted(name for name in models.__dict__
    if name.islower() and not name.startswith("__")
    and callable(models.__dict__[name]))

parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR', nargs='?', default='imagenet',
                    help='path to dataset (default: imagenet)')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
                    choices=model_names,
                    help='model architecture: ' +
                        ' | '.join(model_names) +
                        ' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
                    help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                    help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
                    metavar='N',
                    help='mini-batch size (default: 256), this is the total '
                         'batch size of all GPUs on the current node when '
                         'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
                    metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                    help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
                    metavar='W', help='weight decay (default: 1e-4)',
                    dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
                    metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
                    help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
                    help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
                    help='use pre-trained model')
parser.add_argument('--world-size', default=-1, type=int,
                    help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
                    help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
                    help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
                    help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
                    help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
                    help='GPU id to use.')
parser.add_argument('--no-accel', action='store_true',
                    help='disables accelerator')
parser.add_argument('--multiprocessing-distributed', action='store_true',
                    help='Use multi-processing distributed training to launch '
                         'N processes per node, which has N GPUs. This is the '
                         'fastest way to use PyTorch for either single node or '
                         'multi node data parallel training')
parser.add_argument('--dummy', action='store_true', help="use fake data to benchmark")

best_acc1 = 0


def main():
    args = parser.parse_args()

    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        cudnn.benchmark = False
        warnings.warn('You have chosen to seed training. '
                      'This will turn on the CUDNN deterministic setting, '
                      'which can slow down your training considerably! '
                      'You may see unexpected behavior when restarting '
                      'from checkpoints.')

    if args.gpu is not None:
        warnings.warn('You have chosen a specific GPU. This will completely '
                      'disable data parallelism.')

    if args.dist_url == "env://" and args.world_size == -1:
        args.world_size = int(os.environ["WORLD_SIZE"])

    args.distributed = args.world_size > 1 or args.multiprocessing_distributed

    use_accel = not args.no_accel and torch.accelerator.is_available()

    if use_accel:
        device = torch.accelerator.current_accelerator()
    else:
        device = torch.device("cpu")

    print(f"Using device: {device}")

    if device.type =='cuda':
        ngpus_per_node = torch.accelerator.device_count()
        if ngpus_per_node == 1 and args.dist_backend == "nccl":
            warnings.warn("nccl backend >=2.5 requires GPU count>1, see https://github.com/NVIDIA/nccl/issues/103 perhaps use 'gloo'")
    else:
        ngpus_per_node = 1

    if args.multiprocessing_distributed:
        # Since we have ngpus_per_node processes per node, the total world_size
        # needs to be adjusted accordingly
        args.world_size = ngpus_per_node * args.world_size
        # Use torch.multiprocessing.spawn to launch distributed processes: the
        # main_worker process function
        mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
    else:
        # Simply call main_worker function
        main_worker(args.gpu, ngpus_per_node, args)


def main_worker(gpu, ngpus_per_node, args):
    global best_acc1
    args.gpu = gpu

    use_accel = not args.no_accel and torch.accelerator.is_available()

    if use_accel:
        if args.gpu is not None:
            torch.accelerator.set_device_index(args.gpu)
        device = torch.accelerator.current_accelerator()
    else:
        device = torch.device("cpu")

    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if args.multiprocessing_distributed:
            # For multiprocessing distributed training, rank needs to be the
            # global rank among all the processes
            args.rank = args.rank * ngpus_per_node + gpu
        dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                world_size=args.world_size, rank=args.rank)
    # create model
    if args.pretrained:
        print("=> using pre-trained model '{}'".format(args.arch))
        model = models.__dict__[args.arch](pretrained=True)
    else:
        print("=> creating model '{}'".format(args.arch))
        model = models.__dict__[args.arch]()

    if not use_accel:
        print('using CPU, this will be slow')
    elif args.distributed:
        # For multiprocessing distributed, DistributedDataParallel constructor
        # should always set the single device scope, otherwise,
        # DistributedDataParallel will use all available devices.
        if device.type == 'cuda':
            if args.gpu is not None:
                torch.cuda.set_device(args.gpu)
                model.cuda(device)
                # When using a single GPU per process and per
                # DistributedDataParallel, we need to divide the batch size
                # ourselves based on the total number of GPUs of the current node.
                args.batch_size = int(args.batch_size / ngpus_per_node)
                args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
                model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
            else:
                model.cuda()
                # DistributedDataParallel will divide and allocate batch_size to all
                # available GPUs if device_ids are not set
                model = torch.nn.parallel.DistributedDataParallel(model)
    elif device.type == 'cuda':
        # DataParallel will divide and allocate batch_size to all available GPUs
        if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
            model.features = torch.nn.DataParallel(model.features)
            model.cuda()
        else:
            model = torch.nn.DataParallel(model).cuda()
    else:
        model.to(device)


    # define loss function (criterion), optimizer, and learning rate scheduler
    criterion = nn.CrossEntropyLoss().to(device)

    optimizer = torch.optim.SGD(model.parameters(), args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
    scheduler = StepLR(optimizer, step_size=30, gamma=0.1)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            if args.gpu is None:
                checkpoint = torch.load(args.resume)
            else:
                # Map model to be loaded to specified single gpu.
                loc = f'{device.type}:{args.gpu}'
                checkpoint = torch.load(args.resume, map_location=loc)
            args.start_epoch = checkpoint['epoch']
            best_acc1 = checkpoint['best_acc1']
            if args.gpu is not None:
                # best_acc1 may be from a checkpoint from a different GPU
                best_acc1 = best_acc1.to(args.gpu)
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            scheduler.load_state_dict(checkpoint['scheduler'])
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))


    # Data loading code
    if args.dummy:
        print("=> Dummy data is used!")
        train_dataset = datasets.FakeData(1281167, (3, 224, 224), 1000, transforms.ToTensor())
        val_dataset = datasets.FakeData(50000, (3, 224, 224), 1000, transforms.ToTensor())
    else:
        traindir = os.path.join(args.data, 'train')
        valdir = os.path.join(args.data, 'val')
        normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

        train_dataset = datasets.ImageFolder(
            traindir,
            transforms.Compose([
                transforms.RandomResizedCrop(224),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalize,
            ]))

        val_dataset = datasets.ImageFolder(
            valdir,
            transforms.Compose([
                transforms.Resize(256),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalize,
            ]))

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
        val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False, drop_last=True)
    else:
        train_sampler = None
        val_sampler = None

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
        num_workers=args.workers, pin_memory=True, sampler=train_sampler)

    val_loader = torch.utils.data.DataLoader(
        val_dataset, batch_size=args.batch_size, shuffle=False,
        num_workers=args.workers, pin_memory=True, sampler=val_sampler)

    if args.evaluate:
        validate(val_loader, model, criterion, args)
        return

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch, device, args)

        # evaluate on validation set
        acc1 = validate(val_loader, model, criterion, args)

        scheduler.step()

        # remember best acc@1 and save checkpoint
        is_best = acc1 > best_acc1
        best_acc1 = max(acc1, best_acc1)

        if not args.multiprocessing_distributed or (args.multiprocessing_distributed
                and args.rank % ngpus_per_node == 0):
            save_checkpoint({
                'epoch': epoch + 1,
                'arch': args.arch,
                'state_dict': model.state_dict(),
                'best_acc1': best_acc1,
                'optimizer' : optimizer.state_dict(),
                'scheduler' : scheduler.state_dict()
            }, is_best)

def train(train_loader, model, criterion, optimizer, epoch, device, args):

    use_accel = not args.no_accel and torch.accelerator.is_available()

    batch_time = AverageMeter('Time', use_accel, ':6.3f', Summary.NONE)
    data_time = AverageMeter('Data', use_accel, ':6.3f', Summary.NONE)
    losses = AverageMeter('Loss', use_accel, ':.4e', Summary.NONE)
    top1 = AverageMeter('Acc@1', use_accel, ':6.2f', Summary.NONE)
    top5 = AverageMeter('Acc@5', use_accel, ':6.2f', Summary.NONE)
    progress = ProgressMeter(
        len(train_loader),
        [batch_time, data_time, losses, top1, top5],
        prefix="Epoch: [{}]".format(epoch))

    # switch to train mode
    model.train()

    end = time.time()
    debugger = PrecisionDebugger(dump_path="./dump_data", task="tensor", step=[0, 1])
    for i, (images, target) in enumerate(train_loader):
        debugger.start()
        # measure data loading time
        data_time.update(time.time() - end)

        # move data to the same device as model
        images = images.to(device, non_blocking=True)
        target = target.to(device, non_blocking=True)

        # compute output
        output = model(images)
        loss = criterion(output, target)

        # measure accuracy and record loss
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        losses.update(loss.item(), images.size(0))
        top1.update(acc1[0], images.size(0))
        top5.update(acc5[0], images.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        debugger.stop()
        debugger.step()

        if i % args.print_freq == 0:
            progress.display(i + 1)


def validate(val_loader, model, criterion, args):

    use_accel = not args.no_accel and torch.accelerator.is_available()

    def run_validate(loader, base_progress=0):

        if use_accel:
            device = torch.accelerator.current_accelerator()
        else:
            device = torch.device("cpu")

        with torch.no_grad():
            end = time.time()
            for i, (images, target) in enumerate(loader):
                i = base_progress + i
                if use_accel:
                    if args.gpu is not None and device.type=='cuda':
                        torch.accelerator.set_device_index(argps.gpu)
                        images = images.cuda(args.gpu, non_blocking=True)
                        target = target.cuda(args.gpu, non_blocking=True)
                    else:
                        images = images.to(device)
                        target = target.to(device)

                # compute output
                output = model(images)
                loss = criterion(output, target)

                # measure accuracy and record loss
                acc1, acc5 = accuracy(output, target, topk=(1, 5))
                losses.update(loss.item(), images.size(0))
                top1.update(acc1[0], images.size(0))
                top5.update(acc5[0], images.size(0))

                # measure elapsed time
                batch_time.update(time.time() - end)
                end = time.time()

                if i % args.print_freq == 0:
                    progress.display(i + 1)

    batch_time = AverageMeter('Time', use_accel, ':6.3f', Summary.NONE)
    losses = AverageMeter('Loss', use_accel, ':.4e', Summary.NONE)
    top1 = AverageMeter('Acc@1', use_accel, ':6.2f', Summary.AVERAGE)
    top5 = AverageMeter('Acc@5', use_accel, ':6.2f', Summary.AVERAGE)
    progress = ProgressMeter(
        len(val_loader) + (args.distributed and (len(val_loader.sampler) * args.world_size < len(val_loader.dataset))),
        [batch_time, losses, top1, top5],
        prefix='Test: ')

    # switch to evaluate mode
    model.eval()

    run_validate(val_loader)
    if args.distributed:
        top1.all_reduce()
        top5.all_reduce()

    if args.distributed and (len(val_loader.sampler) * args.world_size < len(val_loader.dataset)):
        aux_val_dataset = Subset(val_loader.dataset,
                                 range(len(val_loader.sampler) * args.world_size, len(val_loader.dataset)))
        aux_val_loader = torch.utils.data.DataLoader(
            aux_val_dataset, batch_size=args.batch_size, shuffle=False,
            num_workers=args.workers, pin_memory=True)
        run_validate(aux_val_loader, len(val_loader))

    progress.display_summary()

    return top1.avg


def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, 'model_best.pth.tar')

class Summary(Enum):
    NONE = 0
    AVERAGE = 1
    SUM = 2
    COUNT = 3

class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self, name, use_accel, fmt=':f', summary_type=Summary.AVERAGE):
        self.name = name
        self.use_accel = use_accel
        self.fmt = fmt
        self.summary_type = summary_type
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    def all_reduce(self):    
        if use_accel:
            device = torch.accelerator.current_accelerator()
        else:
            device = torch.device("cpu")
        total = torch.tensor([self.sum, self.count], dtype=torch.float32, device=device)
        dist.all_reduce(total, dist.ReduceOp.SUM, async_op=False)
        self.sum, self.count = total.tolist()
        self.avg = self.sum / self.count

    def __str__(self):
        fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
        return fmtstr.format(**self.__dict__)

    def summary(self):
        fmtstr = ''
        if self.summary_type is Summary.NONE:
            fmtstr = ''
        elif self.summary_type is Summary.AVERAGE:
            fmtstr = '{name} {avg:.3f}'
        elif self.summary_type is Summary.SUM:
            fmtstr = '{name} {sum:.3f}'
        elif self.summary_type is Summary.COUNT:
            fmtstr = '{name} {count:.3f}'
        else:
            raise ValueError('invalid summary type %r' % self.summary_type)

        return fmtstr.format(**self.__dict__)


class ProgressMeter(object):
    def __init__(self, num_batches, meters, prefix=""):
        self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
        self.meters = meters
        self.prefix = prefix

    def display(self, batch):
        entries = [self.prefix + self.batch_fmtstr.format(batch)]
        entries += [str(meter) for meter in self.meters]
        print('\t'.join(entries))

    def display_summary(self):
        entries = [" *"]
        entries += [meter.summary() for meter in self.meters]
        print(' '.join(entries))

    def _get_batch_fmtstr(self, num_batches):
        num_digits = len(str(num_batches // 1))
        fmt = '{:' + str(num_digits) + 'd}'
        return '[' + fmt + '/' + fmt.format(num_batches) + ']'

def accuracy(output, target, topk=(1,)):
    """Computes the accuracy over the k top predictions for the specified values of k"""
    with torch.no_grad():
        maxk = max(topk)
        batch_size = target.size(0)

        _, pred = output.topk(maxk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(target.view(1, -1).expand_as(pred))

        res = []
        for k in topk:
            correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
            res.append(correct_k.mul_(100.0 / batch_size))
        return res


if __name__ == '__main__':
    main()

Ascend PyTorch Profiler接口采集性能数据代码样例

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import argparse
import os
import random
import shutil
import time
import warnings
from enum import Enum

import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.transforms as transforms
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import Subset

import torch_npu
from torch_npu.contrib import transfer_to_npu

model_names = sorted(name for name in models.__dict__
    if name.islower() and not name.startswith("__")
    and callable(models.__dict__[name]))

parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR', nargs='?', default='imagenet',
                    help='path to dataset (default: imagenet)')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
                    choices=model_names,
                    help='model architecture: ' +
                        ' | '.join(model_names) +
                        ' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
                    help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                    help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
                    metavar='N',
                    help='mini-batch size (default: 256), this is the total '
                         'batch size of all GPUs on the current node when '
                         'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
                    metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                    help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
                    metavar='W', help='weight decay (default: 1e-4)',
                    dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
                    metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
                    help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
                    help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
                    help='use pre-trained model')
parser.add_argument('--world-size', default=-1, type=int,
                    help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
                    help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
                    help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
                    help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
                    help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
                    help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
                    help='Use multi-processing distributed training to launch '
                         'N processes per node, which has N GPUs. This is the '
                         'fastest way to use PyTorch for either single node or '
                         'multi node data parallel training')
parser.add_argument('--dummy', action='store_true', help="use fake data to benchmark")

best_acc1 = 0


def main():
    args = parser.parse_args()

    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        cudnn.benchmark = False
        warnings.warn('You have chosen to seed training. '
                      'This will turn on the CUDNN deterministic setting, '
                      'which can slow down your training considerably! '
                      'You may see unexpected behavior when restarting '
                      'from checkpoints.')

    if args.gpu is not None:
        warnings.warn('You have chosen a specific GPU. This will completely '
                      'disable data parallelism.')

    if args.dist_url == "env://" and args.world_size == -1:
        args.world_size = int(os.environ["WORLD_SIZE"])

    args.distributed = args.world_size > 1 or args.multiprocessing_distributed

    if torch.cuda.is_available():
        ngpus_per_node = torch.cuda.device_count()
        if ngpus_per_node == 1 and args.dist_backend == "nccl":
            warnings.warn("nccl backend >=2.5 requires GPU count>1, see https://github.com/NVIDIA/nccl/issues/103 perhaps use 'gloo'")
    else:
        ngpus_per_node = 1

    if args.multiprocessing_distributed:
        # Since we have ngpus_per_node processes per node, the total world_size
        # needs to be adjusted accordingly
        args.world_size = ngpus_per_node * args.world_size
        # Use torch.multiprocessing.spawn to launch distributed processes: the
        # main_worker process function
        mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
    else:
        # Simply call main_worker function
        main_worker(args.gpu, ngpus_per_node, args)


def main_worker(gpu, ngpus_per_node, args):
    global best_acc1
    args.gpu = gpu

    if args.gpu is not None:
        print("Use GPU: {} for training".format(args.gpu))

    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if args.multiprocessing_distributed:
            # For multiprocessing distributed training, rank needs to be the
            # global rank among all the processes
            args.rank = args.rank * ngpus_per_node + gpu
        dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                world_size=args.world_size, rank=args.rank)
    # create model
    if args.pretrained:
        print("=> using pre-trained model '{}'".format(args.arch))
        model = models.__dict__[args.arch](pretrained=True)
    else:
        print("=> creating model '{}'".format(args.arch))
        model = models.__dict__[args.arch]()
    if not torch.cuda.is_available() and not torch.backends.mps.is_available():
        print('using CPU, this will be slow')
    elif args.distributed:
        # For multiprocessing distributed, DistributedDataParallel constructor
        # should always set the single device scope, otherwise,
        # DistributedDataParallel will use all available devices.
        if torch.cuda.is_available():
            if args.gpu is not None:
                torch.cuda.set_device(args.gpu)
                model.cuda(args.gpu)
                # When using a single GPU per process and per
                # DistributedDataParallel, we need to divide the batch size
                # ourselves based on the total number of GPUs of the current node.
                args.batch_size = int(args.batch_size / ngpus_per_node)
                args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
                model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
            else:
                model.cuda()
                # DistributedDataParallel will divide and allocate batch_size to all
                # available GPUs if device_ids are not set
                model = torch.nn.parallel.DistributedDataParallel(model)
    elif args.gpu is not None and torch.cuda.is_available():
        torch.cuda.set_device(args.gpu)
        model = model.cuda(args.gpu)
    elif torch.backends.mps.is_available():
        device = torch.device("mps")
        model = model.to(device)
    else:
        # DataParallel will divide and allocate batch_size to all available GPUs
        if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
            model.features = torch.nn.DataParallel(model.features)
            model.cuda()
        else:
            model = torch.nn.DataParallel(model).cuda()

    if torch.cuda.is_available():
        if args.gpu:
            device = torch.device('cuda:{}'.format(args.gpu))
        else:
            device = torch.device("cuda")
    elif torch.backends.mps.is_available():
        device = torch.device("mps")
    else:
        device = torch.device("cpu")
    # define loss function (criterion), optimizer, and learning rate scheduler
    criterion = nn.CrossEntropyLoss().to(device)

    optimizer = torch.optim.SGD(model.parameters(), args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
    scheduler = StepLR(optimizer, step_size=30, gamma=0.1)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            if args.gpu is None:
                checkpoint = torch.load(args.resume)
            elif torch.cuda.is_available():
                # Map model to be loaded to specified single gpu.
                loc = 'cuda:{}'.format(args.gpu)
                checkpoint = torch.load(args.resume, map_location=loc)
            args.start_epoch = checkpoint['epoch']
            best_acc1 = checkpoint['best_acc1']
            if args.gpu is not None:
                # best_acc1 may be from a checkpoint from a different GPU
                best_acc1 = best_acc1.to(args.gpu)
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            scheduler.load_state_dict(checkpoint['scheduler'])
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))


    # Data loading code
    if args.dummy:
        print("=> Dummy data is used!")
        train_dataset = datasets.FakeData(1281167, (3, 224, 224), 1000, transforms.ToTensor())
        val_dataset = datasets.FakeData(50000, (3, 224, 224), 1000, transforms.ToTensor())
    else:
        traindir = os.path.join(args.data, 'train')
        valdir = os.path.join(args.data, 'val')
        normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

        train_dataset = datasets.ImageFolder(
            traindir,
            transforms.Compose([
                transforms.RandomResizedCrop(224),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalize,
            ]))

        val_dataset = datasets.ImageFolder(
            valdir,
            transforms.Compose([
                transforms.Resize(256),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalize,
            ]))

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
        val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False, drop_last=True)
    else:
        train_sampler = None
        val_sampler = None

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
        num_workers=args.workers, pin_memory=True, sampler=train_sampler)

    val_loader = torch.utils.data.DataLoader(
        val_dataset, batch_size=args.batch_size, shuffle=False,
        num_workers=args.workers, pin_memory=True, sampler=val_sampler)

    if args.evaluate:
        validate(val_loader, model, criterion, args)
        return

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch, device, args)

        # evaluate on validation set
        acc1 = validate(val_loader, model, criterion, args)

        scheduler.step()

        # remember best acc@1 and save checkpoint
        is_best = acc1 > best_acc1
        best_acc1 = max(acc1, best_acc1)

        if not args.multiprocessing_distributed or (args.multiprocessing_distributed
                and args.rank % ngpus_per_node == 0):
            save_checkpoint({
                'epoch': epoch + 1,
                'arch': args.arch,
                'state_dict': model.state_dict(),
                'best_acc1': best_acc1,
                'optimizer' : optimizer.state_dict(),
                'scheduler' : scheduler.state_dict()
            }, is_best)


def train(train_loader, model, criterion, optimizer, epoch, device, args):
    batch_time = AverageMeter('Time', ':6.3f')
    data_time = AverageMeter('Data', ':6.3f')
    losses = AverageMeter('Loss', ':.4e')
    top1 = AverageMeter('Acc@1', ':6.2f')
    top5 = AverageMeter('Acc@5', ':6.2f')
    progress = ProgressMeter(
        len(train_loader),
        [batch_time, data_time, losses, top1, top5],
        prefix="Epoch: [{}]".format(epoch))

    # switch to train mode
    model.train()

    end = time.time()
    experimental_config = torch_npu.profiler._ExperimentalConfig(
        profiler_level=torch_npu.profiler.ProfilerLevel.Level0,
        data_simplification=False)
    with torch_npu.profiler.profile(
        activities=[
            torch_npu.profiler.ProfilerActivity.CPU,
            torch_npu.profiler.ProfilerActivity.NPU
            ],
        schedule=torch_npu.profiler.schedule(wait=0, warmup=0, active=1, repeat=1, skip_first=1),
        on_trace_ready=torch_npu.profiler.tensorboard_trace_handler("./profiling_data"),
        experimental_config=experimental_config) as prof:
        for i, (images, target) in enumerate(train_loader):
            # measure data loading time
            data_time.update(time.time() - end)

            # move data to the same device as model
            images = images.to(device, non_blocking=True)
            target = target.to(device, non_blocking=True)

            # compute output
            output = model(images)
            loss = criterion(output, target)

            # measure accuracy and record loss
            acc1, acc5 = accuracy(output, target, topk=(1, 5))
            losses.update(loss.item(), images.size(0))
            top1.update(acc1[0], images.size(0))
            top5.update(acc5[0], images.size(0))

            # compute gradient and do SGD step
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            prof.step()

        if i % args.print_freq == 0:
            progress.display(i + 1)


def validate(val_loader, model, criterion, args):

    def run_validate(loader, base_progress=0):
        with torch.no_grad():
            end = time.time()
            for i, (images, target) in enumerate(loader):
                i = base_progress + i
                if args.gpu is not None and torch.cuda.is_available():
                    images = images.cuda(args.gpu, non_blocking=True)
                if torch.backends.mps.is_available():
                    images = images.to('mps')
                    target = target.to('mps')
                if torch.cuda.is_available():
                    target = target.cuda(args.gpu, non_blocking=True)

                # compute output
                output = model(images)
                loss = criterion(output, target)

                # measure accuracy and record loss
                acc1, acc5 = accuracy(output, target, topk=(1, 5))
                losses.update(loss.item(), images.size(0))
                top1.update(acc1[0], images.size(0))
                top5.update(acc5[0], images.size(0))

                # measure elapsed time
                batch_time.update(time.time() - end)
                end = time.time()

                if i % args.print_freq == 0:
                    progress.display(i + 1)

    batch_time = AverageMeter('Time', ':6.3f', Summary.NONE)
    losses = AverageMeter('Loss', ':.4e', Summary.NONE)
    top1 = AverageMeter('Acc@1', ':6.2f', Summary.AVERAGE)
    top5 = AverageMeter('Acc@5', ':6.2f', Summary.AVERAGE)
    progress = ProgressMeter(
        len(val_loader) + (args.distributed and (len(val_loader.sampler) * args.world_size < len(val_loader.dataset))),
        [batch_time, losses, top1, top5],
        prefix='Test: ')

    # switch to evaluate mode
    model.eval()

    run_validate(val_loader)
    if args.distributed:
        top1.all_reduce()
        top5.all_reduce()

    if args.distributed and (len(val_loader.sampler) * args.world_size < len(val_loader.dataset)):
        aux_val_dataset = Subset(val_loader.dataset,
                                 range(len(val_loader.sampler) * args.world_size, len(val_loader.dataset)))
        aux_val_loader = torch.utils.data.DataLoader(
            aux_val_dataset, batch_size=args.batch_size, shuffle=False,
            num_workers=args.workers, pin_memory=True)
        run_validate(aux_val_loader, len(val_loader))

    progress.display_summary()

    return top1.avg


def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, 'model_best.pth.tar')

class Summary(Enum):
    NONE = 0
    AVERAGE = 1
    SUM = 2
    COUNT = 3

class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self, name, fmt=':f', summary_type=Summary.AVERAGE):
        self.name = name
        self.fmt = fmt
        self.summary_type = summary_type
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    def all_reduce(self):
        if torch.cuda.is_available():
            device = torch.device("cuda")
        elif torch.backends.mps.is_available():
            device = torch.device("mps")
        else:
            device = torch.device("cpu")
        total = torch.tensor([self.sum, self.count], dtype=torch.float32, device=device)
        dist.all_reduce(total, dist.ReduceOp.SUM, async_op=False)
        self.sum, self.count = total.tolist()
        self.avg = self.sum / self.count

    def __str__(self):
        fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
        return fmtstr.format(**self.__dict__)

    def summary(self):
        fmtstr = ''
        if self.summary_type is Summary.NONE:
            fmtstr = ''
        elif self.summary_type is Summary.AVERAGE:
            fmtstr = '{name} {avg:.3f}'
        elif self.summary_type is Summary.SUM:
            fmtstr = '{name} {sum:.3f}'
        elif self.summary_type is Summary.COUNT:
            fmtstr = '{name} {count:.3f}'
        else:
            raise ValueError('invalid summary type %r' % self.summary_type)

        return fmtstr.format(**self.__dict__)


class ProgressMeter(object):
    def __init__(self, num_batches, meters, prefix=""):
        self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
        self.meters = meters
        self.prefix = prefix

    def display(self, batch):
        entries = [self.prefix + self.batch_fmtstr.format(batch)]
        entries += [str(meter) for meter in self.meters]
        print('\t'.join(entries))

    def display_summary(self):
        entries = [" *"]
        entries += [meter.summary() for meter in self.meters]
        print(' '.join(entries))

    def _get_batch_fmtstr(self, num_batches):
        num_digits = len(str(num_batches // 1))
        fmt = '{:' + str(num_digits) + 'd}'
        return '[' + fmt + '/' + fmt.format(num_batches) + ']'

def accuracy(output, target, topk=(1,)):
    """Computes the accuracy over the k top predictions for the specified values of k"""
    with torch.no_grad():
        maxk = max(topk)
        batch_size = target.size(0)

        _, pred = output.topk(maxk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(target.view(1, -1).expand_as(pred))

        res = []
        for k in topk:
            correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
            res.append(correct_k.mul_(100.0 / batch_size))
        return res


if __name__ == '__main__':
    main()