model.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 | #define USE_MEMPOOL #include "model/model.h" #include "aclnn/aclnn_gelu_operation.h" #include "utils/utils.h" #include "atb/atb_graph_op.h" #include "memory/memory_utils.h" void Model::InitResource(uint32_t deviceId) { // 配置deviceId deviceId_ = deviceId; auto ret = aclrtSetDevice(deviceId_); CHECK_RET(ret, "aclrtSetDevice failed. ret: " + std::to_string(ret)); // 创建context ret = atb::CreateContext(&modeContext_); CHECK_RET(ret, "ATB CreateContext failed. ret: " + std::to_string(ret)); // 创建stream ret = aclrtCreateStream(&modelStream_); CHECK_RET(ret, "aclrtCreateStream failed. ret: " + std::to_string(ret)); // 配置stream modeContext_->SetExecuteStream(modelStream_); } void Model::CreateModelGraph() { LOG_INFO("CreateModelGraph start"); // 这里以模型中有2个节点参与演示 nodes_.resize(2); for (size_t i = 0; i < nodes_.size(); i++) { auto node = Node(); nodes_[i] = node; } modelInTensors_.resize(Mode_INPUT_SIZE); modelOutTensors_.resize(Mode_OUTPUT_SIZE); internalTensors_.resize(1); size_t nodeId = 0; CreateGraphOpLayer(nodeId++); // step2:创建aclnn算子的Node CreateAclnnOpLayer(nodeId); LOG_INFO("CreateModelGraph end"); } void Model::CreateGraphOpLayer(size_t nodeId) { // 创建图算子的operation Node &graph_node = nodes_[nodeId]; auto ret = CreateGraphOperation(&graph_node.operation_); CHECK_RET(ret, "CreateGraphOperation failed"); graph_node.inTensors_.resize(graph_node.operation_->GetInputNum()); // 设置图算子node节点的输入 // 因为图算子的输入就是整个model的输入,因此这里直接从model的inTensors_赋值 size_t layerInTensorId = 0; graph_node.inTensors_.at(layerInTensorId++) = &modelInTensors_.at(IN_TENSOR_A); graph_node.inTensors_.at(layerInTensorId++) = &modelInTensors_.at(IN_TENSOR_B); graph_node.inTensors_.at(layerInTensorId++) = &modelInTensors_.at(IN_TENSOR_C); graph_node.inTensors_.at(layerInTensorId++) = &modelInTensors_.at(IN_TENSOR_D); // 设置图算子node节点的输出,因为只有一个中间节点 graph_node.outTensors_ = {&internalTensors_.at(0)}; graph_node.outTensorTypes_ = {TensorType::INTERNAL_TENSOR}; }; void Model::CreateAclnnOpLayer(size_t nodeId) { // 创建aclnn算子的operation Node &aclnn_node = nodes_[nodeId]; AclnnGeluParam AclnnGeluParam; AclnnGeluParam.geluApproximate = -1; aclnn_node.operation_ = new GeluOperation("Gelu", AclnnGeluParam); aclnn_node.inTensors_.resize(aclnn_node.operation_->GetInputNum()); // 设置aclnn算子node节点的输入 // 因为图算子的输出就是aclnn算子的输入, size_t layerInTensorId = 0; aclnn_node.inTensors_.at(layerInTensorId++) = &internalTensors_.at(0); // 设置aclnn算子node节点的输出,model的输出 aclnn_node.outTensors_ = {&modelOutTensors_.at(GLUE_OUT)}; aclnn_node.outTensorTypes_ = {TensorType::NOT_INTERNAL_TENSOR}; } void Model::CreateModelInput() { LOG_INFO("CreateModelInput start"); atb::SVector<atb::TensorDesc> intensorDescs; intensorDescs.resize(Mode_INPUT_SIZE); CreateInTensorDescs(intensorDescs); CreateInTensors(modelInTensors_, intensorDescs); LOG_INFO("CreateModelInput end"); } void Model::CreateModelOutput() { LOG_INFO("CreateModelOutput start"); atb::SVector<atb::TensorDesc> outtensorDescs; outtensorDescs.resize(Mode_OUTPUT_SIZE); // 设置输入的input desc atb::SVector<atb::TensorDesc> inTensorDescs; inTensorDescs.resize(Mode_INPUT_SIZE); for (size_t i = 0; i < modelInTensors_.size(); ++i) { inTensorDescs.at(i) = modelInTensors_.at(i).desc; } // 调用infer shape,推导出模型的输出 InferShape(inTensorDescs, outtensorDescs); CreateOutTensors(modelOutTensors_, outtensorDescs); LOG_INFO("CreateModelOutput end"); } atb::Status Model::InferShape( const atb::SVector<atb::TensorDesc> &inTensorDescs, atb::SVector<atb::TensorDesc> &outTensorDescs) { // 输出的shape和输入是相同的。取第一个的输入即可 outTensorDescs.at(0) = modelInTensors_.at(0).desc; return atb::NO_ERROR; } void Model::Execute() { LOG_INFO(modelName_ + " Execute start"); for (size_t nodeId = 0; nodeId < nodes_.size(); ++nodeId) { BuildNodeVariantPack(nodeId); atb::Status status = ExecuteNode(nodeId); CHECK_RET(status, "ExecuteNode " + std::to_string(nodeId) + " failed. status: " + std::to_string(status)); } WaitFinish(); LOG_INFO(modelName_ + " Execute end"); } void Model::BuildNodeVariantPack(int nodeId) { LOG_INFO("buildNodeVariantPack nodes[" + std::to_string(nodeId) + "] start"); auto &node = nodes_.at(nodeId); atb::SVector<atb::TensorDesc> inTensorDescs; node.variantPack_.inTensors.resize(node.operation_->GetInputNum()); inTensorDescs.resize(node.operation_->GetInputNum()); // 获取node中operation_的输入tensor desc for (size_t i = 0; i < node.inTensors_.size(); ++i) { node.variantPack_.inTensors.at(i) = *node.inTensors_.at(i); inTensorDescs.at(i) = node.inTensors_.at(i)->desc; } atb::SVector<atb::TensorDesc> outTensorDescs; outTensorDescs.resize(node.operation_->GetOutputNum()); // 调用operation_的InferShape,推导出out tensor的desc atb::Status st = node.operation_->InferShape(inTensorDescs, outTensorDescs); node.variantPack_.outTensors.resize(node.operation_->GetOutputNum()); for (size_t i = 0; i < node.outTensors_.size(); ++i) { node.variantPack_.outTensors.at(i) = *node.outTensors_.at(i); if (node.outTensorTypes_.at(i) == TensorType::INTERNAL_TENSOR) { // 创建输出tensor的空间 CreateTensorFromDesc(node.variantPack_.outTensors.at(i), outTensorDescs.at(i)); *node.outTensors_.at(i) = node.variantPack_.outTensors.at(i); } } LOG_INFO("buildNodeVariantPack nodes[" + std::to_string(nodeId) + "] end"); } atb::Status Model::ExecuteNode(int nodeId) { auto &node = nodes_.at(nodeId); // 调用Setup接口 uint64_t workspaceSize = 0; atb::Status status = node.operation_->Setup(node.variantPack_, workspaceSize, modeContext_); CHECK_RET(status, "Setup node " + std::to_string(nodeId) + " failed. status: " + std::to_string(status)); LOG_INFO("Get node[" + std::to_string(nodeId) + "] workspace size:" + std::to_string(workspaceSize)); // 分配workspace #ifdef USE_MEMPOOL CreateWorkspaceBuffer(nodeId, workspaceSize); #else if (workspaceSize != 0) { status = aclrtMalloc(&node.workspace_, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(status, "alloc error!"); } #endif // 调用Execute接口 LOG_INFO("Execute node[" + std::to_string(nodeId) + "] start"); status = node.operation_->Execute(node.variantPack_, (uint8_t *)(node.workspace_), workspaceSize, modeContext_); CHECK_RET(status, "Execute node " + std::to_string(nodeId) + " failed. status: " + std::to_string(status)); LOG_INFO("Execute node[" + std::to_string(nodeId) + "] end"); return atb::NO_ERROR; } void Model::CreateWorkspaceBuffer(int nodeId, int workspaceSizeNeeded) { auto &node = nodes_.at(nodeId); if (workspaceSizeNeeded == 0) { LOG_INFO("skip the workspacebuffer for size 0"); return; } if (node.workspaceBlockId_ == -1 || node.workspaceSize_ == 0) { node.workspaceSize_ = workspaceSizeNeeded; GetMemoryManager().AllocateBlock(node.workspaceSize_, node.workspaceBlockId_); } if (node.workspaceSize_ < workspaceSizeNeeded) { GetMemoryManager().FreeBlock(node.workspaceBlockId_); GetMemoryManager().AllocateBlock(workspaceSizeNeeded, node.workspaceBlockId_); node.workspaceSize_ = workspaceSizeNeeded; } GetMemoryManager().GetBlockPtr(node.workspaceBlockId_, node.workspace_); } void Model::FreeResource() { LOG_INFO("FreeResource start"); auto status = aclrtDestroyStream(modelStream_); // 销毁stream CHECK_RET(status, "aclrtDestroyStream failed"); // 释放operation for (auto &node : nodes_) { atb::DestroyOperation(node.operation_); #ifdef USE_MEMPOOL GetMemoryManager().FreeBlock(node.workspaceBlockId_); #endif } status = atb::DestroyContext(modeContext_); // 销毁context CHECK_RET(status, "aclrtDestroyStream failed"); // 销毁输入tensor for (size_t i = 0; i < modelInTensors_.size(); i++) { aclrtFree(modelInTensors_.at(i).deviceData); } // 销毁输出tensor for (size_t i = 0; i < modelOutTensors_.size(); i++) { aclrtFree(modelOutTensors_.at(i).deviceData); } // 释放中间tensor for (size_t i = 0; i < internalTensors_.size(); i++) { aclrtFree(internalTensors_.at(i).deviceData); } aclrtResetDevice(deviceId_); // 重置deviceId LOG_INFO("FreeResource end"); } void Model::WaitFinish() { // step9:销毁创建的对象,释放内存 // 流同步,作用是等待device侧任务计算完成 auto ret = aclrtSynchronizeStream(modelStream_); CHECK_RET(ret, "sync error!"); } |
父主题: 用例源码