昇腾社区首页
中文
注册

model.cpp

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#define USE_MEMPOOL

#include "model/model.h"
#include "aclnn/aclnn_gelu_operation.h"
#include "utils/utils.h"
#include "atb/atb_graph_op.h"
#include "memory/memory_utils.h"

void Model::InitResource(uint32_t deviceId)
{
    // 配置deviceId
    deviceId_ = deviceId;
    auto ret = aclrtSetDevice(deviceId_);
    CHECK_RET(ret, "aclrtSetDevice failed. ret: " + std::to_string(ret));

    // 创建context
    ret = atb::CreateContext(&modeContext_);
    CHECK_RET(ret, "ATB CreateContext failed. ret: " + std::to_string(ret));

    // 创建stream
    ret = aclrtCreateStream(&modelStream_);
    CHECK_RET(ret, "aclrtCreateStream failed. ret: " + std::to_string(ret));

    // 配置stream
    modeContext_->SetExecuteStream(modelStream_);
}

void Model::CreateModelGraph()
{
    LOG_INFO("CreateModelGraph start");
    // 这里以模型中有2个节点参与演示
    nodes_.resize(2);
    for (size_t i = 0; i < nodes_.size(); i++) {
        auto node = Node();
        nodes_[i] = node;
    }

    modelInTensors_.resize(Mode_INPUT_SIZE);
    modelOutTensors_.resize(Mode_OUTPUT_SIZE);

    internalTensors_.resize(1);
    size_t nodeId = 0;
    CreateGraphOpLayer(nodeId++);

    // step2:创建aclnn算子的Node
    CreateAclnnOpLayer(nodeId);
    LOG_INFO("CreateModelGraph end");
}

void Model::CreateGraphOpLayer(size_t nodeId)
{
    // 创建图算子的operation
    Node &graph_node = nodes_[nodeId];
    auto ret = CreateGraphOperation(&graph_node.operation_);
    CHECK_RET(ret, "CreateGraphOperation failed");
    graph_node.inTensors_.resize(graph_node.operation_->GetInputNum());

    // 设置图算子node节点的输入
    // 因为图算子的输入就是整个model的输入,因此这里直接从model的inTensors_赋值
    size_t layerInTensorId = 0;
    graph_node.inTensors_.at(layerInTensorId++) = &modelInTensors_.at(IN_TENSOR_A);
    graph_node.inTensors_.at(layerInTensorId++) = &modelInTensors_.at(IN_TENSOR_B);
    graph_node.inTensors_.at(layerInTensorId++) = &modelInTensors_.at(IN_TENSOR_C);
    graph_node.inTensors_.at(layerInTensorId++) = &modelInTensors_.at(IN_TENSOR_D);

    // 设置图算子node节点的输出,因为只有一个中间节点
    graph_node.outTensors_ = {&internalTensors_.at(0)};
    graph_node.outTensorTypes_ = {TensorType::INTERNAL_TENSOR};
};

void Model::CreateAclnnOpLayer(size_t nodeId)
{
    // 创建aclnn算子的operation
    Node &aclnn_node = nodes_[nodeId];
    AclnnGeluParam AclnnGeluParam;
    AclnnGeluParam.geluApproximate = -1;
    aclnn_node.operation_ = new GeluOperation("Gelu", AclnnGeluParam);
    aclnn_node.inTensors_.resize(aclnn_node.operation_->GetInputNum());

    // 设置aclnn算子node节点的输入
    // 因为图算子的输出就是aclnn算子的输入,
    size_t layerInTensorId = 0;
    aclnn_node.inTensors_.at(layerInTensorId++) = &internalTensors_.at(0);

    // 设置aclnn算子node节点的输出,model的输出
    aclnn_node.outTensors_ = {&modelOutTensors_.at(GLUE_OUT)};
    aclnn_node.outTensorTypes_ = {TensorType::NOT_INTERNAL_TENSOR};
}

void Model::CreateModelInput()
{
    LOG_INFO("CreateModelInput start");
    atb::SVector<atb::TensorDesc> intensorDescs;
    intensorDescs.resize(Mode_INPUT_SIZE);
    CreateInTensorDescs(intensorDescs);
    CreateInTensors(modelInTensors_, intensorDescs);
    LOG_INFO("CreateModelInput end");
}

void Model::CreateModelOutput()
{
    LOG_INFO("CreateModelOutput start");
    atb::SVector<atb::TensorDesc> outtensorDescs;
    outtensorDescs.resize(Mode_OUTPUT_SIZE);

    // 设置输入的input desc
    atb::SVector<atb::TensorDesc> inTensorDescs;
    inTensorDescs.resize(Mode_INPUT_SIZE);
    for (size_t i = 0; i < modelInTensors_.size(); ++i) {
        inTensorDescs.at(i) = modelInTensors_.at(i).desc;
    }

    // 调用infer shape,推导出模型的输出
    InferShape(inTensorDescs, outtensorDescs);
    CreateOutTensors(modelOutTensors_, outtensorDescs);
    LOG_INFO("CreateModelOutput end");
}

atb::Status Model::InferShape(
    const atb::SVector<atb::TensorDesc> &inTensorDescs, atb::SVector<atb::TensorDesc> &outTensorDescs)
{
    // 输出的shape和输入是相同的。取第一个的输入即可
    outTensorDescs.at(0) = modelInTensors_.at(0).desc;
    return atb::NO_ERROR;
}

void Model::Execute()
{
    LOG_INFO(modelName_ + " Execute start");
    for (size_t nodeId = 0; nodeId < nodes_.size(); ++nodeId) {
        BuildNodeVariantPack(nodeId);
        atb::Status status = ExecuteNode(nodeId);
        CHECK_RET(status, "ExecuteNode " + std::to_string(nodeId) + " failed. status: " + std::to_string(status));
    }

    WaitFinish();
    LOG_INFO(modelName_ + " Execute end");
}

void Model::BuildNodeVariantPack(int nodeId)
{
    LOG_INFO("buildNodeVariantPack nodes[" + std::to_string(nodeId) + "] start");

    auto &node = nodes_.at(nodeId);
    atb::SVector<atb::TensorDesc> inTensorDescs;
    node.variantPack_.inTensors.resize(node.operation_->GetInputNum());
    inTensorDescs.resize(node.operation_->GetInputNum());

    // 获取node中operation_的输入tensor desc
    for (size_t i = 0; i < node.inTensors_.size(); ++i) {
        node.variantPack_.inTensors.at(i) = *node.inTensors_.at(i);
        inTensorDescs.at(i) = node.inTensors_.at(i)->desc;
    }

    atb::SVector<atb::TensorDesc> outTensorDescs;
    outTensorDescs.resize(node.operation_->GetOutputNum());

    // 调用operation_的InferShape,推导出out tensor的desc
    atb::Status st = node.operation_->InferShape(inTensorDescs, outTensorDescs);

    node.variantPack_.outTensors.resize(node.operation_->GetOutputNum());
    for (size_t i = 0; i < node.outTensors_.size(); ++i) {
        node.variantPack_.outTensors.at(i) = *node.outTensors_.at(i);
        if (node.outTensorTypes_.at(i) == TensorType::INTERNAL_TENSOR) {
            // 创建输出tensor的空间
            CreateTensorFromDesc(node.variantPack_.outTensors.at(i), outTensorDescs.at(i));
            *node.outTensors_.at(i) = node.variantPack_.outTensors.at(i);
        }
    }
    LOG_INFO("buildNodeVariantPack nodes[" + std::to_string(nodeId) + "] end");
}

atb::Status Model::ExecuteNode(int nodeId)
{
    auto &node = nodes_.at(nodeId);

    // 调用Setup接口
    uint64_t workspaceSize = 0;
    atb::Status status = node.operation_->Setup(node.variantPack_, workspaceSize, modeContext_);
    CHECK_RET(status, "Setup node " + std::to_string(nodeId) + " failed. status: " + std::to_string(status));

    LOG_INFO("Get node[" + std::to_string(nodeId) + "] workspace size:" + std::to_string(workspaceSize));

    // 分配workspace
#ifdef USE_MEMPOOL
    CreateWorkspaceBuffer(nodeId, workspaceSize);
#else
    if (workspaceSize != 0) {
        status = aclrtMalloc(&node.workspace_, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(status, "alloc error!");
    }
#endif

    // 调用Execute接口
    LOG_INFO("Execute node[" + std::to_string(nodeId) + "] start");
    status = node.operation_->Execute(node.variantPack_, (uint8_t *)(node.workspace_), workspaceSize, modeContext_);
    CHECK_RET(status, "Execute node " + std::to_string(nodeId) + " failed. status: " + std::to_string(status));
    LOG_INFO("Execute node[" + std::to_string(nodeId) + "] end");
    return atb::NO_ERROR;
}

void Model::CreateWorkspaceBuffer(int nodeId, int workspaceSizeNeeded)
{
    auto &node = nodes_.at(nodeId);
    if (workspaceSizeNeeded == 0) {
        LOG_INFO("skip the workspacebuffer for size 0");
        return;
    }
    if (node.workspaceBlockId_ == -1 || node.workspaceSize_ == 0) {
        node.workspaceSize_ = workspaceSizeNeeded;
        GetMemoryManager().AllocateBlock(node.workspaceSize_, node.workspaceBlockId_);
    }
    if (node.workspaceSize_ < workspaceSizeNeeded) {
        GetMemoryManager().FreeBlock(node.workspaceBlockId_);
        GetMemoryManager().AllocateBlock(workspaceSizeNeeded, node.workspaceBlockId_);
        node.workspaceSize_ = workspaceSizeNeeded;
    }

    GetMemoryManager().GetBlockPtr(node.workspaceBlockId_, node.workspace_);
}

void Model::FreeResource()
{
    LOG_INFO("FreeResource start");
    auto status = aclrtDestroyStream(modelStream_);  // 销毁stream
    CHECK_RET(status, "aclrtDestroyStream failed");

    // 释放operation
    for (auto &node : nodes_) {
        atb::DestroyOperation(node.operation_);
#ifdef USE_MEMPOOL
        GetMemoryManager().FreeBlock(node.workspaceBlockId_);
#endif
    }

    status = atb::DestroyContext(modeContext_);  // 销毁context
    CHECK_RET(status, "aclrtDestroyStream failed");

    // 销毁输入tensor
    for (size_t i = 0; i < modelInTensors_.size(); i++) {
        aclrtFree(modelInTensors_.at(i).deviceData);
    }

    // 销毁输出tensor
    for (size_t i = 0; i < modelOutTensors_.size(); i++) {
        aclrtFree(modelOutTensors_.at(i).deviceData);
    }

    // 释放中间tensor
    for (size_t i = 0; i < internalTensors_.size(); i++) {
        aclrtFree(internalTensors_.at(i).deviceData);
    }

    aclrtResetDevice(deviceId_);  // 重置deviceId
    LOG_INFO("FreeResource end");
}

void Model::WaitFinish()
{
    // step9:销毁创建的对象,释放内存
    // 流同步,作用是等待device侧任务计算完成
    auto ret = aclrtSynchronizeStream(modelStream_);
    CHECK_RET(ret, "sync error!");
}