conv2d_backprop_filter
功能说明
在给定5HD格式的Data和5HD格式的out_backprop的情况下计算float32的2-D反卷积。
Data tensor 的shape是5HD,即(N, C1, H, W, C0);out_backprop Tensor 的shape是 5HD,即(N, C1, H, W, C0)。
函数原型
conv2d_backprop_filter(input_x, out_backprop, filter_sizes, para_dict)
参数说明
- input_x:2d卷积的FeatureMap,tensor,5HD格式,目前支持float16类型
- out_backprop:2d卷积的输出反向,目前支持float16类型
- filter_size:2d卷积的权重矩阵大小
- para_dict:字典格式,包含各种参数,后续参数扩展一般都在para_dict
返回值
res_tensor:表示卷积计算的tensor,即卷积计算的结果输出。
约束说明
此接口暂不支持与其他TBE DSL计算接口混合使用。
支持的型号
调用示例
from tbe import tvm
from tbe import dsl
out_backprop_shape = (1, 1, 7, 7, 16)
out_backprop_dtype = "float16"
fmap_shape = (1, 1, 7, 7, 16)
fmap_dtype = "float16"
filter_sizes = (16, 16, 1, 1)
out_backprop = tvm.placeholder(out_backprop_shape, name="out_backprop", dtype=out_backprop_dtype)
fmap = tvm.placeholder(fmap_shape, name="fmap", dtype=fmap_dtype)
strides = [1, 1]
padding = [0, 0, 0, 0]
dilations = [1, 1, 1, 1]
groups = 1
res_dtype = "float32"
kernel_name = "conv2d_backprop_filter_dx_1_1_7_7_16_dy_1_1_7_7_16_dw_16_16_1_1_s_1_1_p_SAME"
para_dict = {
"strides": strides,
"padding": padding,
"dilations": dilations,
"groups": groups,
"res_dtype": res_dtype,
"kernel_name": kernel_name
}
filter_backprop = dsl.conv2d_backprop_filter(
input_x=fmap,
out_backprop=out_backprop,
filter_sizes=filter_sizes,
para_dict=para_dict
)
父主题: NN计算接口