昇腾社区首页
中文
注册

FFT_1D

C2C

C2C_1D算子调用示例:

#include <iostream>
#include <vector>
#include "asdsip.h"
#include "acl/acl.h"
#include "aclnn/acl_meta.h"
using namespace AsdSip;

#define CHECK_RET(cond, return_expr) \
    do {                             \
        if (!(cond)) {               \
            return_expr;             \
        }                            \
    } while (0)

#define LOG_PRINT(message, ...)         \
    do {                                \
        printf(message, ##__VA_ARGS__); \
    } while (0)

#define ASD_STATUS_CHECK(err)                                                \
    do {                                                                     \
        AsdSip::AspbStatus err_ = (err);                                     \
        if (err_ != AsdSip::NO_ERROR) {                                      \
            std::cout << "Execute failed." << std::endl; \
            exit(-1);                                                        \
        }                                                                    \
    } while (0)

int64_t GetShapeSize(const std::vector<int64_t> &shape)
{
    int64_t shapeSize = 1;
    for (auto i : shape) {
        shapeSize *= i;
    }
    return shapeSize;
}

int Init(int32_t deviceId, aclrtStream *stream)
{
    // 固定写法,AscendCL初始化
    auto ret = aclInit(nullptr);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
    ret = aclrtSetDevice(deviceId);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
    ret = aclrtCreateStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
    return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
    aclDataType dataType, aclTensor **tensor)
{
    auto size = GetShapeSize(shape) * sizeof(T);
    // 调用aclrtMalloc申请device侧内存
    auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
    // 调用aclrtMemcpy将host侧数据复制到device侧内存上
    ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

    // 计算连续tensor的strides
    std::vector<int64_t> strides(shape.size(), 1);
    for (int64_t i = shape.size() - 2; i >= 0; i--) {
        strides[i] = shape[i + 1] * strides[i + 1];
    }

    // 调用aclCreateTensor接口创建aclTensor
    *tensor = aclCreateTensor(shape.data(),
        shape.size(),
        dataType,
        strides.data(),
        0,
        aclFormat::ACL_FORMAT_ND,
        shape.data(),
        shape.size(),
        *deviceAddr);
    return 0;
}

int main()
{
    int32_t deviceId = 0;
    aclrtStream stream;
    auto ret = Init(deviceId, &stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

    // 创造tensor的Host侧数据
    int batch = 32, Nfft = 128;  // c2c dft
    // int batch = 32, Nfft = 8192; // c2c fftb
    // int batch = 32, Nfft = 15000; // c2c mixed
    // int batch = 32, Nfft = 32768; // c2c fftn
    // int batch = 32, Nfft = 199 * 199;  // core any
    const int64_t tensorInSize = batch * Nfft;
    std::vector<int64_t> selfShape = {batch, Nfft};
    std::vector<int64_t> outShape = {batch, Nfft};
    std::vector<std::complex<float>> inputHostData(tensorInSize, std::complex<float>(0, 0));
    for (int i = 0; i < tensorInSize; i++) {
        inputHostData[i] = std::complex<float>(i, i + 1);
    }
    std::vector<std::complex<float>> outHostData(tensorInSize, std::complex<float>(0, 0));
    void *inputDeviceAddr = nullptr;
    void *outDeviceAddr = nullptr;
    aclTensor *input = nullptr;
    aclTensor *out = nullptr;
    ret = CreateAclTensor(inputHostData, selfShape, &inputDeviceAddr, aclDataType::ACL_COMPLEX64, &input);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_COMPLEX64, &out);
    CHECK_RET(ret == ACL_SUCCESS, return ret);

    asdFftHandle handle;
    asdFftCreate(handle);

    asdFftMakePlan1D(handle, Nfft, asdFftType::ASCEND_FFT_C2C, asdFftDirection::ASCEND_FFT_FORWARD, batch);

    size_t work_size;
    asdFftGetWorkspaceSize(handle, work_size);
    void *workspaceAddr = nullptr;
    if (work_size > 0) {
        ret = aclrtMalloc(&workspaceAddr, static_cast<int64_t>(work_size), ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
    }
    asdFftSetWorkspace(handle, (uint8_t *)workspaceAddr);

    asdFftSetStream(handle, stream);
    ASD_STATUS_CHECK(asdFftExecC2C(handle, input, out));

    ret = aclrtSynchronizeStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

    asdFftDestroy(handle);

    auto size = GetShapeSize(outShape);
    std::vector<std::complex<float>> outData(size, 0);
    ret = aclrtMemcpy(outData.data(),
        outData.size() * sizeof(outData[0]),
        outDeviceAddr,
        size * sizeof(outData[0]),
        ACL_MEMCPY_DEVICE_TO_HOST);

    // 打印输出tensor值中前16个
    for (int64_t i = 0; i < 16; i++) {
        std::cout << static_cast<std::complex<float>>(outData[i]) << "\t";
    }
    std::cout << "\nend result" << std::endl;
    std::cout << "Execute successfully." << std::endl;

    aclDestroyTensor(input);
    aclDestroyTensor(out);
    aclrtFree(inputDeviceAddr);
    aclrtFree(outDeviceAddr);
    if (work_size > 0) {
        aclrtFree(workspaceAddr);
    }
    aclrtDestroyStream(stream);
    aclrtResetDevice(deviceId);
    aclFinalize();
    return 0;
}

C2R

C2R_1D算子调用示例:

#include <iostream>
#include <vector>
#include "asdsip.h"
#include "acl/acl.h"
#include "aclnn/acl_meta.h"
using namespace AsdSip;

#define CHECK_RET(cond, return_expr) \
    do {                             \
        if (!(cond)) {               \
            return_expr;             \
        }                            \
    } while (0)

#define LOG_PRINT(message, ...)         \
    do {                                \
        printf(message, ##__VA_ARGS__); \
    } while (0)

#define ASD_STATUS_CHECK(err)                                                \
    do {                                                                     \
        AsdSip::AspbStatus err_ = (err);                                     \
        if (err_ != AsdSip::NO_ERROR) {                                      \
            std::cout << "Execute failed." << std::endl; \
            exit(-1);                                                        \
        }                                                                    \
    } while (0)

int64_t GetShapeSize(const std::vector<int64_t> &shape)
{
    int64_t shapeSize = 1;
    for (auto i : shape) {
        shapeSize *= i;
    }
    return shapeSize;
}

int Init(int32_t deviceId, aclrtStream *stream)
{
    // 固定写法,AscendCL初始化
    auto ret = aclInit(nullptr);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
    ret = aclrtSetDevice(deviceId);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
    ret = aclrtCreateStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
    return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
    aclDataType dataType, aclTensor **tensor)
{
    auto size = GetShapeSize(shape) * sizeof(T);
    // 调用aclrtMalloc申请device侧内存
    auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
    // 调用aclrtMemcpy将host侧数据复制到device侧内存上
    ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

    // 计算连续tensor的strides
    std::vector<int64_t> strides(shape.size(), 1);
    for (int64_t i = shape.size() - 2; i >= 0; i--) {
        strides[i] = shape[i + 1] * strides[i + 1];
    }

    // 调用aclCreateTensor接口创建aclTensor
    *tensor = aclCreateTensor(shape.data(),
        shape.size(),
        dataType,
        strides.data(),
        0,
        aclFormat::ACL_FORMAT_ND,
        shape.data(),
        shape.size(),
        *deviceAddr);
    return 0;
}

int main()
{
    int32_t deviceId = 0;
    aclrtStream stream;
    auto ret = Init(deviceId, &stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

    // 创造tensor的Host侧数据
    int batch = 32, Nfft = 128;
    // int batch = 32, Nfft = 8192;
    // int batch = 8, Nfft = 567;
    // int batch = 32, Nfft = 997;
    // int batch = 32, Nfft = 15000;

    // 创造tensor的Host侧数据
    // int batch = 32, Nfft = 199 * 199;
    const int64_t inSignal = Nfft / 2 + 1;
    const int64_t outSignal = Nfft;
    const int64_t tensorInSize = batch * inSignal;
    const int64_t tensorOutSize = batch * outSignal;
    std::vector<int64_t> selfShape = {batch, inSignal};
    std::vector<int64_t> outShape = {batch, outSignal};
    std::vector<std::complex<float>> inputHostData(tensorInSize, std::complex<float>(0, 0));
    for (int i = 0; i < tensorInSize; i++) {
        inputHostData[i] = std::complex<float>(i, i + 1);
    }
    std::vector<float> outHostData(tensorOutSize, 0);
    void *inputDeviceAddr = nullptr;
    void *outDeviceAddr = nullptr;
    aclTensor *input = nullptr;
    aclTensor *out = nullptr;
    ret = CreateAclTensor(inputHostData, selfShape, &inputDeviceAddr, aclDataType::ACL_COMPLEX64, &input);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
    CHECK_RET(ret == ACL_SUCCESS, return ret);

    asdFftHandle handle;
    asdFftCreate(handle);

    asdFftMakePlan1D(handle, Nfft, asdFftType::ASCEND_FFT_C2R, asdFftDirection::ASCEND_FFT_FORWARD, batch);

    size_t work_size;
    asdFftGetWorkspaceSize(handle, work_size);
    void *workspaceAddr = nullptr;
    if (work_size > 0) {
        ret = aclrtMalloc(&workspaceAddr, static_cast<int64_t>(work_size), ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
    }
    asdFftSetWorkspace(handle, (uint8_t *)workspaceAddr);

    asdFftSetStream(handle, stream);
    ASD_STATUS_CHECK(asdFftExecC2R(handle, input, out));

    ret = aclrtSynchronizeStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

    asdFftDestroy(handle);

    auto size = GetShapeSize(outShape);
    std::vector<float> outData(size, 0);
    ret = aclrtMemcpy(outData.data(),
        outData.size() * sizeof(outData[0]),
        outDeviceAddr,
        size * sizeof(outData[0]),
        ACL_MEMCPY_DEVICE_TO_HOST);

    // 打印输出tensor值中前16个
    for (int64_t i = 0; i < 16; i++) {
        std::cout << static_cast<float>(outData[i]) << "\t";
    }
    std::cout << "\nend result" << std::endl;
    std::cout << "Execute successfully." << std::endl;

    aclDestroyTensor(input);
    aclDestroyTensor(out);
    aclrtFree(inputDeviceAddr);
    aclrtFree(outDeviceAddr);
    if (work_size > 0) {
        aclrtFree(workspaceAddr);
    }
    aclrtDestroyStream(stream);
    aclrtResetDevice(deviceId);
    aclFinalize();
    return 0;
}

R2C

R2C_1D算子调用示例:

#include <iostream>
#include <vector>
#include "asdsip.h"
#include "acl/acl.h"
#include "aclnn/acl_meta.h"
using namespace AsdSip;

#define CHECK_RET(cond, return_expr) \
    do {                             \
        if (!(cond)) {               \
            return_expr;             \
        }                            \
    } while (0)

#define LOG_PRINT(message, ...)         \
    do {                                \
        printf(message, ##__VA_ARGS__); \
    } while (0)

#define ASD_STATUS_CHECK(err)                                                \
    do {                                                                     \
        AsdSip::AspbStatus err_ = (err);                                     \
        if (err_ != AsdSip::NO_ERROR) {                                      \
            std::cout << "Execute failed." << std::endl; \
            exit(-1);                                                        \
        }                                                                    \
    } while (0)

int64_t GetShapeSize(const std::vector<int64_t> &shape)
{
    int64_t shapeSize = 1;
    for (auto i : shape) {
        shapeSize *= i;
    }
    return shapeSize;
}

int Init(int32_t deviceId, aclrtStream *stream)
{
    // 固定写法,AscendCL初始化
    auto ret = aclInit(nullptr);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
    ret = aclrtSetDevice(deviceId);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
    ret = aclrtCreateStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
    return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
    aclDataType dataType, aclTensor **tensor)
{
    auto size = GetShapeSize(shape) * sizeof(T);
    // 调用aclrtMalloc申请device侧内存
    auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
    // 调用aclrtMemcpy将host侧数据复制到device侧内存上
    ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

    // 计算连续tensor的strides
    std::vector<int64_t> strides(shape.size(), 1);
    for (int64_t i = shape.size() - 2; i >= 0; i--) {
        strides[i] = shape[i + 1] * strides[i + 1];
    }

    // 调用aclCreateTensor接口创建aclTensor
    *tensor = aclCreateTensor(shape.data(),
        shape.size(),
        dataType,
        strides.data(),
        0,
        aclFormat::ACL_FORMAT_ND,
        shape.data(),
        shape.size(),
        *deviceAddr);
    return 0;
}

int main()
{
    int32_t deviceId = 0;
    aclrtStream stream;
    auto ret = Init(deviceId, &stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

    // 创造tensor的Host侧数据
    int batch = 32, Nfft = 256;
    // int batch = 32, Nfft = 199 * 199;
    const int64_t inSignal = Nfft;
    const int64_t outSignal = Nfft / 2 + 1;
    const int64_t tensorInSize = batch * inSignal;
    const int64_t tensorOutSize = batch * outSignal;
    std::vector<int64_t> selfShape = {batch, inSignal};
    std::vector<int64_t> outShape = {batch, outSignal};
    std::vector<float> inputHostData(tensorInSize, 0);
    for (int i = 0; i < tensorInSize; i++) {
        inputHostData[i] = i;
    }
    std::vector<std::complex<float>> outHostData(tensorOutSize, std::complex<float>(0, 0));
    void *inputDeviceAddr = nullptr;
    void *outDeviceAddr = nullptr;
    aclTensor *input = nullptr;
    aclTensor *out = nullptr;
    ret = CreateAclTensor(inputHostData, selfShape, &inputDeviceAddr, aclDataType::ACL_FLOAT, &input);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_COMPLEX64, &out);
    CHECK_RET(ret == ACL_SUCCESS, return ret);

    asdFftHandle handle;
    asdFftCreate(handle);

    asdFftMakePlan1D(handle, Nfft, asdFftType::ASCEND_FFT_R2C, asdFftDirection::ASCEND_FFT_FORWARD, batch);

    size_t work_size;
    asdFftGetWorkspaceSize(handle, work_size);
    void *workspaceAddr = nullptr;
    if (work_size > 0) {
        ret = aclrtMalloc(&workspaceAddr, static_cast<int64_t>(work_size), ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
    }
    asdFftSetWorkspace(handle, (uint8_t *)workspaceAddr);

    asdFftSetStream(handle, stream);
    ASD_STATUS_CHECK(asdFftExecR2C(handle, input, out));

    ret = aclrtSynchronizeStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

    asdFftDestroy(handle);

    auto size = GetShapeSize(outShape);
    std::vector<std::complex<float>> outData(size, 0);
    ret = aclrtMemcpy(outData.data(),
        outData.size() * sizeof(outData[0]),
        outDeviceAddr,
        size * sizeof(outData[0]),
        ACL_MEMCPY_DEVICE_TO_HOST);

    // 打印输出tensor值中前16个
    for (int64_t i = 0; i < 16; i++) {
        std::cout << static_cast<std::complex<float>>(outData[i]) << "\t";
    }
    std::cout << "\nend result" << std::endl;
    std::cout << "Execute successfully." << std::endl;

    aclDestroyTensor(input);
    aclDestroyTensor(out);
    aclrtFree(inputDeviceAddr);
    aclrtFree(outDeviceAddr);
    if (work_size > 0) {
        aclrtFree(workspaceAddr);
    }
    aclrtDestroyStream(stream);
    aclrtResetDevice(deviceId);
    aclFinalize();
    return 0;
}